
Avishay Tal (UC Berkeley)

Lectures 3 & 4

Analysis of Boolean Functions:
Foundations and Applications to TCS

Lectures 3 & 4

Main character: Fourier Growth – a complexity measure
for Boolean functions that captures the ability to
aggregate weak k-wise correlations in the input.

Applications:

1. Quantum Advantage

2. Pseudo-randomness

3. Lower Bounds

Quantum Advantage:
For which tasks do quantum algorithms
provably outperform classical algorithms?

The Black-Box / Query Model

𝑖 𝑥𝑖

Typical Question: Does the black-box satisfy a property or not?

Query Complexity: How many queries (possibly adaptive) are
needed to determine the property?

𝑥 ∈ ±1 𝑁

The Decision Tree Model

1
𝑥1

𝑥2 𝑥3

−1 1 −1 1

𝑥7 𝑥2 …

-1 1

-1 1 -1 1

-1 1-1 1

𝑓: −1,1 𝑁 → {−1,1}

𝐷 𝑓 = minimal depth of a
decision tree
computing 𝑓

= deterministic query
complexity of 𝑓

depth 𝑑

The Randomized Decision Tree Model

𝑅 𝑓 = minimal depth of a
randomized decision
tree computing 𝑓

= randomized query
complexity of 𝑓

Randomized decision tree of depth 𝑑: a distribution over
deterministic decision trees of depth at most 𝑑.

We say that a randomized decision tree computes 𝑓 if its output

equals 𝑓(𝑥) with probability at least
2

3
 for all 𝑥 ∈ {−1,1}𝑁

𝑇1 𝑇𝑚𝑇2

depth 𝑑

...

…

𝑝1 𝑝2
𝑝𝑚

Quantum Query Complexity

𝑖 𝑥𝑖

𝑥 ∈ ±1 𝑁

A query to the input applies the unitary transformation 𝑂𝑥 that maps
| ۧ𝑖 → 𝑥𝑖| ۧ𝑖

A 𝑡-query quantum algorithm applies
 𝑈𝑡+1 𝑂𝑥 𝑈𝑡 … 𝑂𝑥 𝑈3 𝑂𝑥 𝑈2 𝑂𝑥 𝑈1 ۧ|0

where 𝑈1, … , 𝑈𝑡+1 are unitary transformations that do not depend on 𝑥.

Finally: measure the state ➔ accept/reject based on outcome.

𝑥𝑖| ۧ𝑖| ۧ𝑖

Quantum Query Complexity

𝑥 ∈ ±1 𝑁

𝑄 𝑓 = minimal number of queries of a
quantum query algorithm computing 𝑓

= quantum query complexity of 𝑓

We say that a quantum query algorithm computes 𝑓 if its output

equals 𝑓(𝑥) with probability at least
2

3
 for all 𝑥 ∈ {−1,1}𝑁

| ۧ𝑖 𝑥𝑖| ۧ𝑖

Quantum Advantage in Query Model

Are quantum algorithms superior to randomized
(or deterministic) algorithms in the query model?

[Grover’96]: Quadratic speed-up

[Aaronson, Ben-David, Kothari’16, T’20, Bansal, Sinha’21,
Sherstov, Storozhenko, Wu’21]: Super-quadratic speed-ups!
Constructed a total function 𝑓cs with 𝑅 𝑓cs ≥ ෩Ω(𝑄 𝑓cs

3)

[Beals, Buhrman, Cleve, Mosca, de Wolf’98, Aaronson, Ben-David, Kothari, Rao, T’ 21]:

For total functions 𝑓: ±1 𝑁 → ±1 at most polynomial speed-ups:
𝑅 𝑓 ≤ 𝐷 𝑓 ≤ 𝑂(𝑄 𝑓 4)

For partial functions 𝑓: 𝐴 → {−1,1}, 𝐴 ⊆ −1,1 𝑁 exponential
separations exist [Simon’94, Shor’94, Childs, Cleve, Deotto, Farhi, Gutmann,

Spielman’03, Aarondson, Ambainis’15], e.g. 𝑄 𝑓 = 𝑂 1 , 𝑅 𝑓 = √𝑁

vs

Motivation:
Identify a property that separates
quantum from classical (query) algorithms

Recall: Discrete Fourier Analysis 101

The Fourier transform of a Boolean function 𝑓 naturally
defines a distribution 𝐷𝑓 over sets 𝑆 ⊆ {1, … , 𝑛}:

Denote by 𝐖𝑘 𝑓 = 𝐏𝐫
𝑆∼𝐷𝑓

[|𝑆| = 𝑘] = σ𝑆:|𝑆|=𝑘
መ𝑓 𝑆 2

Denote by 𝐖≥𝑘 𝑓 = 𝐏𝐫
𝑆∼𝐷𝑓

[𝑆 ≥ 𝑘] = σ𝑆: 𝑆 ≥𝑘
መ𝑓 𝑆 2

The probability to sample 𝑆 from 𝐷𝑓 equals መ𝑓 𝑆 2.

Fourier Weight

Fourier Tail

Tails and Low-Degree Approximation Equivalence

Let 𝑓: −1,1 𝑛 → ℝ. The truncated Fourier expansion of 𝑓 at level 𝑘
is a degree 𝑘 polynomial defined by

𝑓≤𝑘 𝑥 = ෍

𝑆: 𝑆 ≤𝑘

መ𝑓 𝑆 ⋅ ෑ

𝑖∈𝑆

𝑥𝑖

By Parseval: 𝐄𝑥 𝑓 𝑥 − 𝑓≤𝑘 𝑥
2

= 𝐖>𝑘[𝑓].

By Parseval: this is the best L2-approx. of 𝑓 among degree 𝑘 polys.

𝑓 has a degree-𝑘 L2-approximation with error 𝜀 iff 𝐖>𝑘 𝑓 ≤ 𝜀

𝐖𝑘 Parity 𝐖𝑘 Majority

Parity 𝑥1, … , 𝑥𝑛 = 𝑥1 ⋅ 𝑥2 ⋅ … ⋅ 𝑥𝑛 Majority 𝑥1, … , 𝑥𝑛 = sign ෍

𝑖

𝑥𝑖

Exponentially Small Fourier Tails

Definition: 𝑓 has ESFT(t) if for all 𝑘: 𝐖≥𝑘 𝑓 ≤ 𝑒−𝑘/𝑡

𝐖𝑘 𝑓

𝑡

Exponentially Small Fourier Tails

Definition: 𝑓 has ESFT(t) if for all 𝑘: 𝐖≥𝑘 𝑓 ≤ 𝑒−𝑘/𝑡

Several well-studied classes of Boolean functions have ESFT(t)

1. CNFs / DNFs formulae [H’86, LMN’89] 𝑡 = 𝑂(log 𝑛)

2. Formulae of size 𝑠 [R’11] 𝑡 = 𝑂 𝑠

3. Read-Once formulas [IK’14] 𝑡 = 𝑂 𝑛0.31

4. Constant-depth circuits [T’14] 𝑡 = polylog(𝑛)

5. Fncs with max-sensitivity 𝑠 [GSTW’16] 𝑡 = 𝑂(𝑠)

“Excellent Low-Degree Approximations”
Equivalently: 𝑓 in ESFT(t) if
 ∀𝜖 > 0 ∃𝑝: deg 𝑝 ≤ 𝑡 ⋅ log 1/𝜖 , 𝑝 − 𝑓 2 ≤ 𝜖.

Correlation with Parity

Observation: if 𝑓 in ESFT(t), then

𝐄𝑥 𝑓 𝑥 ⋅ Parit𝑦𝑛 𝑥 ≤ 𝑒−𝑛/2𝑡

Proof:

|𝐄𝑥 𝑓 𝑥 ⋅ Parit𝑦𝑛 𝑥 | = መ𝑓 {1,… ,𝑛} = 𝐖𝑛 𝑓 ≤ √𝑒−𝑛/𝑡

𝐖𝑘 𝑓

𝑡

𝐖𝑘 Parity

෍

𝑆: 𝑆 =𝑘

| መ𝑓 𝑆 | = 𝑂 𝑡 𝑘

Different Notions of Fourier Concentration

TFAE:

- 𝑓 has Exponentially Small Fourier Tails: 𝑓 ∈ 𝐄𝐒𝐅𝐓(𝑡)

- 𝑓 has bounded Fourier k-moments:

 ∀𝑘: 𝐄𝑆∼𝐷𝑓

|𝑆|
𝑘

≤ 𝑂 𝑡 𝑘

- 𝑓 simplifies under random restrictions:
 ∀𝑝, 𝑘 : 𝐏𝐫

𝑝 random
restriction

deg 𝑓restricted ≥ 𝑘 ≤ 𝑂 𝑝𝑡 𝑘.

and they imply using Booleanity
L1 degree-k sparsity:

Theorem: Let 𝑓: −1,1 𝑛 → −1,1 . Then,

∀𝑘: ෍

𝑆: 𝑆 =𝑘

መ𝑓 𝑆 ≤ 2𝑘 ⋅ 𝐄𝑆∼𝐷𝑓

|𝑆|
𝑘

Proof: Move to iPad

Separation between Quantum and Randomized Query Algorithms

First Try: Consider polynomial degree

Problem: Both models are approximated by low-degree
polynomials… [Nisan, Szegedy ’92] [Beals, Buhrman, Cleve, Mosca, de Wolf ’98]

But these polynomials are very different!

𝐿1,𝑘 of a quantum query algorithm making 𝑘/2 queries can be 𝑁𝑘−1

𝐿1,𝑘 of a randomized query algorithm making 𝑑 queries is at most 𝑑𝑘

X

The Forrelation Problem [Aaronson’09]

The input to the (2-Fold) Forrelation Problem are two vectors

𝑥, 𝑦 ∈ −1,1 𝑁/2.

The 2-Fold Forrelation Problem: distinguish between

[Yes Instances]: 𝑥, 𝑦 ∶
𝑥,𝐻𝑦

𝑁/2
≥ 𝜏

[No Instances]: 𝑥, 𝑦 ∶
𝑥,𝐻𝑦

𝑁/2
≤ 𝜏/2

𝑥, 𝐻𝑦

𝑁/2
=

1

𝑁/2
෍

𝑖=1

𝑁/2

෍

𝑗=1

𝑁/2

𝑥𝑖 𝐻𝑖,𝑗 𝑦𝑗

𝐻𝑖,𝑗 =
−1 <𝑖,𝑗>

𝑁/2

Pairwise correlations ±
𝜏

√𝑁

No pairwise correlations

Quantum Algorithm for 2-Fold Forrelation

H
Query

𝑥
H

Query
𝑦

H| ۧ0

1

𝑁/2
෍

𝑖=1

𝑁/2

෍

𝑗=1

𝑁/2

𝑥𝑖𝐻𝑖,𝑗𝑦𝑗

2

=
𝑥, 𝐻𝑦

𝑁/2

2

The probability of measuring the all 0’s vector

Main Technical Result [Raz-T’19]:
To solve Forrelation, 𝑓 must have large 𝐿1,2(𝑓).

[Aaronson’09]:

Bounded Depth Circuits

𝑥1 𝑥8 𝑥19 𝑥4 𝑥7 𝑥57
𝑥3 𝑥14 𝑥26 𝑥9 𝑥17 𝑥8

AC0

• 𝑝𝑜𝑙𝑦(𝑁) gates (size of the circuit)

• depth 𝑑 = 𝑂(1)

Motivating Question: Separate Quantum Log Time from AC0

➔ Oracle Separation of BQP (Quantum Polynomial Time)
from PH (The Polynomial Hierarchy)

What do we know about constant depth circuits (AC0)?

[Furst-Saxe-Sipser’81, Ajtai’83, Yao’85, Håstad’86]:

• The 𝑁-variate Parity function is not in AC0.

Proof technique:

• AC0 circuits can be well-approximated (in ℓ2) by
low-degree polynomials (over ℝ). [Håstad’86, LMN’89]

• Parity cannot.

Potential problem with the approach:

𝑂 log 𝑁 time quantum algorithms are also well approximated
by low-degree polynomials. [BBCMW’98]

The Difference between Quantum Log Time and AC0

Both models are approximated by low-degree polynomials,
but these polynomials are very different!

Quantum Log Time may require dense low-deg polynomials

as in the case of Aaronson’s algorithm:

 Degree: 2, # monomials : Θ(𝑁2)

[T’17]: AC0 have sparse low-degree approximations:

∀𝑘: # monomials of degree 𝑘 ≤ polylog 𝑁 𝑘

Amplifies small
pairwise correlations

Does not amplify

[Raz-T’19]:
∃ oracle 𝐴: 𝐁𝐐𝐏𝑨 ⊈ 𝐏𝐇𝑨

“Even if P were equal to NP, even making that strong assumption,
that’s not going to be enough to capture (the power of)
quantum computing.” (Lance Fortnow)

P

NP

PH

BQP

Application

Distinguishing between Distributions

𝑧 ∈ −1, +1 𝑁

sampled from
the uniform

distribution 𝑈

𝑧 ∈ −1, +1 𝑁

sampled
from the

“Forrelation”
distribution 𝐷

One of these boxes is selected at random & given to you.

Can you tell which one is it?

Sampling Forrelated Pairs
(Based on Aaronson’s suggestion with some modifications)

Gaussian dist 𝐺 over ℝ𝑁 ➔ Discrete dist 𝐷 over −1,1 𝑁

The Gaussian distribution 𝐺:
Sample 𝑥1, … , 𝑥𝑁/2 i.i.d. 𝒩 0, 𝜎2

Ԧ𝑦 = 𝐻 ⋅ Ԧ𝑥

Output 𝑧 = (𝑥1, … , 𝑥𝑁/2, 𝑦1, … , 𝑦𝑁/2).

The Discrete distribution 𝐷:

1. Draw 𝑧~𝐺. If z ∉ −1,1 𝑁 ➔ abort

2. Randomized Rounding: For 𝑖 = 1, … , 𝑁,
draw independently 𝑧𝑖

′ ∈ −1,1 with 𝐄 𝑧𝑖
′ = 𝑧𝑖.

𝜎2 = 1/𝑂 log 𝑁

The Fourier expansion of 𝑓: −1,1 𝑁 → {−1,1}:

𝑓 𝑥 = ෍

𝑆⊆{1,…,𝑁}

መ𝑓 𝑆 ⋅ ෑ

𝑖∈𝑆

𝑥𝑖

For example: AND of 2 variables

AND 𝑥1, 𝑥2 = 1
2

 + 1
2

 𝑥1 + 1
2
 𝑥2 − 1

2
 𝑥1𝑥2

AND +1, +1 = +
1

2
+

1

2
+

1

2
−

1

2
= +1.

AND +1, −1 = +
1

2
+

1

2
−

1

2
+

1

2
= +1.

AND −1, +1 = +
1

2
−

1

2
+

1

2
+

1

2
= +1.

AND −1, −1 = +
1

2
−

1

2
−

1

2
−

1

2
= −1.

−1, −1 +1, −1

+1, +1−1, +1

The Fourier Expansion

−1 ≡ True
+1 ≡ False

The Fourier expansion of 𝑓: −1,1 𝑁 → {−1,1}:

𝑓 𝑥 = ෍

𝑆⊆{1,…,𝑁}

መ𝑓 𝑆 ⋅ ෑ

𝑖∈𝑆

𝑥𝑖

Lemma: 𝐄𝑧′∼𝐷 𝑓 𝑧′ ≈ 𝐄𝑧∼𝐺 𝑓 𝑧

Fact: 𝐄𝑢∼𝑈 𝑓 𝑢 = 𝑓(0)

Enough to show: For any 𝑓 in AC0

𝐄𝑧∼𝐺 𝑓 𝑧 ≈ 𝑓(0)

Fourier Expansion: a Bridge between
Discrete and Continuous Settings

Discrete Gaussian

𝐄𝑧∼𝐺 𝑓 𝑧 − 𝑓 0 =

= ෍

𝑆 ≥1

መ𝑓 𝑆 ⋅ 𝐄𝑧∼𝐺 ෑ

𝑖∈𝑆

𝑧𝑖

= ෍

ℓ=1

𝑁/2

෍

𝑆 =2ℓ

መ𝑓 𝑆 ⋅ 𝐄𝑧∼𝐺 ෑ

𝑖∈𝑆

𝑧𝑖

≤ ෍

ℓ=1

𝑁/2

෍

𝑆 =2ℓ

መ𝑓 𝑆 ⋅ 𝜎2ℓ ⋅
ℓ!

𝑁/2
ℓ

≤ ෍

ℓ=1

𝑁/2

polylog 𝑁 2ℓ ⋅ 𝜎2ℓ ⋅
ℓ!

𝑁/2
ℓ

Fourier Analytical Approach – First Attempt

(Isserlis’ Theorem)

(odd moments = 0)

(By definition)

[T’14]Contribution of

first ෩O(𝑁) terms:

𝜎2 ⋅ polylog(𝑁)/ 𝑁

Contribution of larger terms?

Viewing 𝑧~𝐺 as a result of a random walk

A Thought Experiment:
Instead of sampling 𝑧~𝐺
at once, we sample 𝑡 vectors

 𝑧(1), … , 𝑧 𝑡 ~𝐺
independently, and take

𝑧 =
1

√𝑡
⋅ 𝑧(1) + ⋯ + 𝑧(𝑡)

Picture from http://en.wikipedia.org/wiki/Random_walk

Based on the work of
[Chattopadhyay, Hatami, Hosseini, Lovett’18]

Viewing 𝑧~𝐺 as a result of a random walk

Sample 𝑡 vectors 𝑧(1), … , 𝑧 𝑡 ~𝐺

Define 𝑡 + 1 hybrids:

• 𝐻0 = 0

• For 𝑖 = 1, … , 𝑡

𝐻𝑖 =
1

√𝑡
⋅ 𝑧(1) + ⋯ + 𝑧(𝑖)

Observe: 𝐻𝑡~ 𝐺.

Taking 𝑡 → ∞ yields a Brownian motion.

Suffices to take 𝑡 = poly 𝑁 for our analysis.

Claim: for 𝑖 = 0, … , 𝑡 − 1,

𝐄 𝑓 𝐻𝑖+1 − 𝐄 𝑓 𝐻𝑖 ≤
polylog 𝑁

𝑡 𝑁
.

𝐻0

𝐻1

𝐻𝑖+1

𝐻𝑡

𝐻𝑖

Proof by Picture

first step
First Step: Simple Fourier Analysis
Only second level matters.

[CHHL’18]: i-th step ≈ first step,
using closure under restrictions. i-th step

𝐄 𝑓 𝐻1 − 𝐄 𝑓 𝐻0

= 𝐄𝑧∼𝐺 𝑓
1

√𝑡
𝑧 − 𝑓 0

= ෍

ℓ=1

𝑁/2

෍

𝑆 =2ℓ

መ𝑓 𝑆 ⋅ 𝐄𝑧∼𝐺 ෑ

𝑖∈𝑆

1

√𝑡
𝑧𝑖

≤ ෍

ℓ=1

𝑁/2

෍

𝑆 =2ℓ

መ𝑓 𝑆 ⋅
𝜎2ℓ ⋅ ℓ!

𝑡ℓ ⋅ 𝑁/2
ℓ

≤ ෍

ℓ=1

𝑁/2

polylog 𝑁 2ℓ ⋅
𝜎2ℓ ⋅ ℓ!

𝑡ℓ ⋅ 𝑁/2
ℓ

≤
polylog 𝑁

𝑡 𝑁
+ 𝑜

1

𝑡 𝑁

Base Case

(for 𝑡 large enough)

General Case: Reduction to Base Case

Analysis of step i+1:
Conditioned on 𝐻𝑖 ∈ −0.5, 0.5 𝑁 (happens whp):

𝐄 𝑓 𝐻𝑖+1 − 𝐄 𝑓 𝐻𝑖

≤ 𝐄 𝑓 𝐻𝑖 + 1

√𝑡
⋅ 𝑧(𝑖+1) − 𝑓 𝐻𝑖

≤ 𝐄 𝑓𝜌
2

√𝑡
⋅ 𝑧(𝑖+1) − 𝑓𝜌 0 ≤

polylog 𝑁

𝑡 𝑁

Lemma [CHHL’18]: for any fixed 𝑣 ∈ −0.5, 0.5 𝑁 the fnc

𝑔 𝑧 ≝ 𝑓 𝑣 + 𝑧 − 𝑓 𝑣

can be written as 𝐄𝜌 𝑓𝜌 2 ⋅ 𝑧 − 𝑓𝜌 0 where 𝑓𝜌 is a

random restriction of 𝑓 (whose marginals depend on 𝑣).

Recap

Main character: Fourier Growth – a complexity measure
for Boolean functions that captures the ability to
aggregate weak k-wise correlations in the input.

Applications:

1. Quantum Advantage

2. Pseudo-randomness

3. Lower Bounds

Exponentially Small Fourier Tails

Definition: 𝑓 has ESFT(t) if for all 𝑘: 𝐖≥𝑘 𝑓 ≤ 𝑒−𝑘/𝑡

𝐖𝑘 𝑓

𝑡

Exponentially Small Fourier Tails

Definition: 𝑓 has ESFT(t) if for all 𝑘: 𝐖≥𝑘 𝑓 ≤ 𝑒−𝑘/𝑡

Several well-studied classes of Boolean functions have ESFT(t)

1. CNFs / DNFs formulae [H’86, LMN’89] 𝑡 = 𝑂(log 𝑛)

2. Formulae of size 𝑠 [R’11] 𝑡 = 𝑂 𝑠

3. Read-Once formulas [IK’14] 𝑡 = 𝑂 𝑛0.31

4. Constant-depth circuits [T’14] 𝑡 = polylog(𝑛)

5. Fncs with max-sensitivity 𝑠 [GSTW’16] 𝑡 = 𝑂(𝑠)

“Excellent Low-Degree Approximations”
Equivalently: 𝑓 in ESFT(t) if
 ∀𝜖 > 0 ∃𝑝: deg 𝑝 ≤ 𝑡 ⋅ log 1/𝜖 , 𝑝 − 𝑓 2 ≤ 𝜖.

Sparse Polynomial Approximations

Def’n: 𝑓 in L1(t) if ∀𝑘: σ𝑆: 𝑆 =𝑘
መ𝑓 𝑆 ≤ 𝑡𝑘

Theorem [T’14]: If 𝑓 is a Boolean function

𝑓 in ESFT(t) ➔ 𝑓 in L1(O(t))

But the latter is a much broader class!
• Parity in L1(1). That is, Parity is sparse but of high degree.
• constant-width branching programs in L1(polylog(n)) [CHRT’18]

• Most Boolean functions are in L1(O(1)) !!

Which functions do not have “sparse” approximations?

• Majority (Hardest function for this measure), Forrelation

low degree approximations ➔ “sparse” approximations

Known Bounds on 𝐿1,𝑘 𝑓 = σ𝑆: 𝑆 =𝑘
መ𝑓 𝑆

width-𝑤 DNFs/CNFs: 𝐿1,𝑘 ≲ 𝑤𝑘 [Man95]

AC0 circuits of size 𝑠 and depth 𝑑: 𝐿1,𝑘 ≲ log 𝑠 𝑑−1 𝑘 [T17]

Boolean functions with sensitivity 𝑠: 𝐿1,𝑘 ≲ 𝑠𝑘 [GSTW16]

regular width-𝑤 read-1 branching programs:𝐿1,𝑘 ≲ 𝑤 𝑘 [RSV13,LPV22]

width-𝑤 read-1 branching programs: 𝐿1,𝑘 ≲ log 𝑛 𝑤𝑘 [CHRT18]

degree-𝑑 polynomials over 𝐹2: 𝐿1,𝑘 ≲ 2𝑑 ⋅ 𝑘
𝑘

 [CHHL19]

depth-𝑑 (randomized) decision tree: 𝐿1,𝑘 ≲ ෨𝑂 √𝑑
𝑘

 [T20, SSW21]

depth-𝑑 (randomized) parity decision tree: 𝐿1,𝑘 ≲ ෨𝑂 √𝑑
𝑘

 [GTW21]

communication protocols of cost 𝑑: 𝐿1,𝑘 ≲ 𝑑𝑘 [GRT21]

 𝐿1,1 ≲ 𝑑, 𝐿1,2 ≲ 𝑑3/2 [GSTW23]

Quantum query algorithms with 𝑟-rounds 𝑞-queries per round:

 𝐿1,𝑘 ≲ (𝑁
1

2
 −

1

4𝑟 ⋅ 𝑞)𝑘 [GSTW24]

Most bounds are of the form 𝐿1,𝑘 ≲ 𝑡𝑘 for some parameter 𝑡

Proof Overview – 𝐿𝟏,𝟏 for Decision Trees [OS’07]

𝑥2 𝑥3

𝑥3 𝑥5 𝑥4

−1

−1 −1

−1 −1

+1

+1+1

+1+1−1 +1

𝑥1
• Let ℓ be a random root-to-leaf path

• ℓ𝑖 ∈ +1, −1 iff 𝑥𝑖 is queried in the path and fixed to ℓ𝑖

• Then
መ𝑓 {𝑖} = 𝐄𝑥 𝑓 𝑥 ⋅ 𝑥𝑖 = 𝐄ℓ 𝑓 ℓ ⋅ 𝐄𝑥∼ℓ 𝑥𝑖

= 𝐄ℓ 𝑓 ℓ ⋅ ℓ𝑖

• By negating 𝑥𝑖 in 𝑓, we assume መ𝑓 {𝑖} ≥ 0
• By querying dummy variables, WLOG the decision tree is full

• Then 𝐿1,1 𝑓 = σ𝑖
መ𝑓 {𝑖} = 𝐄𝑥 𝑓 ℓ ⋅ σ𝑖 ℓ𝑖 ≤ 𝐄𝑥 | σ𝑖 ℓ𝑖|

• σ𝑖 ℓ𝑖 depends only on the number of +1/−1’s on the path
= the final state of a simple 𝑑-step drunkard walk

𝐄 σ𝑖 ℓ𝑖 ≈ √𝑑 .

ℓ1 = ℓ3 = +1,
ℓ4 = −1

−1 +1

𝑥2 𝑥3

𝑥3 𝑥5 𝑥4

−1

−1 −1

−1
−1

+1

+1+1

+1+1−1 +1

𝑥1
መ𝑓 {𝑖, 𝑗} = 𝐄𝑥 𝑓 𝑥 ⋅ 𝑥𝑖𝑥𝑗 = 𝐄ℓ 𝑓 ℓ ⋅ ℓ𝑖 ⋅ ℓ𝑗 .

Can we assume መ𝑓 {𝑖, 𝑗} ≥ 0?
Probably not. But we can write

𝐿1,2 𝑓 = ෍

𝑖,𝑗

| መ𝑓 𝑖, 𝑗 | = ෍

𝑖,𝑗

𝑎𝑖,𝑗 ⋅ መ𝑓 𝑖, 𝑗

for +-1 coefficients 𝑎𝑖,𝑗 = sgn(መ𝑓 𝑖, 𝑗).

Then 𝐿1,2 𝑓 = 𝐄ℓ 𝑓 ℓ ⋅ σ𝑖,𝑗 𝑎𝑖,𝑗 ⋅ ℓ𝑖ℓ𝑗 ≤ 𝐄ℓ | σ𝑖,𝑗 𝑎𝑖,𝑗 ⋅ ℓ𝑖ℓ𝑗 |

| σ𝑖,𝑗 𝑎𝑖,𝑗 ⋅ ℓ𝑖ℓ𝑗 | ~ a random 1-D walk with variable step sizes.

Let ℓ(𝑡) be the evolution of ℓ after 𝑡 queries.
If querying 𝑥𝑞 in step 𝑡+1, then step size is

| σ𝑖,𝑗 𝑎𝑖,𝑗 ⋅ ℓ𝑖
𝑡+1 ℓ𝑗

(𝑡+1)
− σ𝑖,𝑗 𝑎𝑖,𝑗 ⋅ ℓ𝑖

𝑡 ℓ𝑗
𝑡 | = σ𝑗 𝑎𝑞,𝑗 ⋅ ℓ𝑗

𝑡

ℓ1 = ℓ3 = +1,
ℓ4 = −1

−1 +1

Reduces to 𝐿1,1

Proof Overview – 𝐿𝟏,𝟐 for Decision Trees [T’20]Proof Overview – 𝐿𝟏,𝟐 for Decision Trees [T’20]

Applications to Pseudo-randomness

A distribution 𝐷 over ±1 𝑛 is pseudorandom for class 𝐶 if
∀𝑓 ∈ 𝐶: 𝐄𝑥~𝐷 𝑓 𝑥 ≈𝜀 𝐄𝑥∼𝑈[𝑓 𝑥]

A pseudo-random generator (PRG) for 𝐶 is a function

PRG: −1,1 𝑠 → −1,1 𝑛

such that PRG(𝑈𝑠) is pseudorandom for 𝐶.

PRG

f f

Applications to Pseudo-randomness

[CHLT’19] ∀𝑡: a pseudo-random generator (PRG) for all functions 𝑓
with 𝐿1,2 𝑓 ≤ 𝑡 (assuming same holds for subfunctions of 𝑓)
with seed length 𝑠 = 𝑂 𝑡2 .

Build on [CHHL’18]: a PRG assuming 𝐿1,𝑘 𝑓 ≤ 𝑡𝑘 for all 𝑘.

PRG

f f

PRG Construction

Observe that in the Forrelation analysis, we only relied on pairwise
correlation of Gaussians being smaller than 1/𝐿1,2(𝑓).

Lemma [CHLT’19] : We can sample 𝑛 Gaussians with pairwise

correlation 𝛿 with only 𝑂
1

𝛿2 ⋅ log2 𝑛 seed.

But this gives us just a “Fractional PRG”: a pseudorandom
distribution 𝐷 of points in ℝ𝑛 that is indistinguishable to 𝑓

from uniform on {−1, +1}𝑛, and such that 𝐄𝑥∼𝐷 𝑥𝑖
2 ≥ 1/ log 𝑛

Theorem [CHHL’18]: Fractional PRG ➔ PRG.

Open Problem

Conjecture [Chattopadhyay, Hatami, Lovett, T’19]:

Low-Degree 𝑭𝟐-polynomials have sparse approximations.

More Formally: If 𝑝 𝑥 ∈ 𝑭𝟐[𝑥1, … , 𝑥𝑛] with deg 𝑝 = 𝑑,

then 𝑓(𝑥) = −1 𝑝 𝑥 has

∀𝑘: ෍

𝑆: 𝑆 =𝑘

መ𝑓 𝑆 ≤ 𝑂 𝑑 𝑘 .

• We can prove the case 𝑘=1.

• Proving the case 𝑘=2 would yield pseudorandom generators that “look
random” to low-degree 𝑭𝟐-polynomials (longstanding challenge)

Circuit Complexity Frontier

ACC0

AC0[⊕]

TC0

Majority

MOD6

AC0Parity

weak LBs

Strong worst-case
lower bounds

Strong avg-case
lower bounds

weak LBs

Strong PRGs

weak PRGs

weak PRGs

weak PRGs

How broad are Sparse Polynomial Approximations?

ACC0

AC0[⊕]

TC0

Majority

MOD6

Low Deg
Sparse

Low Deg X
Sparse ?

Low Deg X
Sparse ?

Low Deg X
Sparse X

AC0Parity

Conjecture [CHLT’19]: AC0[⊕], ACC0 have sparse polynomial approximations

Circuit Complexity assuming Conjecture

ACC0

AC0[⊕]

TC0

Majority

MOD6

AC0Parity

weak LBs

Strong avg-case

Strong PRGs

weak PRGs

Strong avg-case

Strong PRGs

Strong PRGs

Strong avg-case

Pseudo-randomness:
Can we derandomize any algorithm while
increasing its memory by at most a constant?

Motivating Question: RL vs. L

Open Question:

Does every problem solvable by a randomized algorithm with
space s, is also solvable by a deterministic algorithm with space
O(s)?

Suffices to focus on s=O(log n): does RL = L?

Log-SpaceRandomized-Log-Space

(Read-Once Oblivious) Branching Programs

• Each layer represents a time step

• Each vertex represents a memory configuration

• 𝑠 memory bits ➔ width at most 2𝑠

𝒏 (length)

𝒘
(width)

…

𝑥1 𝑥2 𝑥3
𝑥𝑛

0

1

0

1

1

0

PRGs for Branching Programs

[Nisan’90]: a PRG for length-𝑛 branching programs with
seed-length:

• 𝑂 log2 𝑛 for width poly(𝑛) (i.e., Log-Space).

• 𝑂 log2 𝑛 even for constant width

For width 2: seed length 𝑂 log 𝑛 suffices
[Saks-Zuckerman, Bogdanov-Dvir-Verbin-Yehudayoff]

Nisan’s PRG remains the state-of-the-art for width ≥ 4

[Chattopadyay-Hatami-Reingold-T’18]:

constant-width branching programs have
sparse polynomial approximations:

∀𝑘: 𝐿1,𝑘(𝑓) ≤ polylog 𝑛 𝑘

Our Main Structural Result

Applications:
1. Exponentially better PRGs for unordered branching

programs [CHRT’18, FK’18]

2. PRGs for width-3 branching programs with seed-
length ෨𝑂 log 𝑛 [MRT’19]

3. PRGs for read-once AC0 (and more) with seed-

length ෨𝑂 log 𝑛 [DHH’20, DMRTV’21]

Show that the current construction by [Forbes-Kelley’18]
works against any constant-width read-once branching
programs with ෨𝑂(log 𝑛) seed length

Open Problem

Fourier Growth of Communication Protocols

Fourier Growth of Communication Protocols

Alice Bob

Alice and Bob exchange 𝑑 bits of communication and output a bit.

Their protocol defines a function 𝐹: ±1 𝑛 × ±1 𝑛 → {±1}

What’s the 𝐿1,𝑘 of 𝐹?
It could be arbitrarily large even with one bit of communication
since Alice can compute an arbitrary function of 𝑥.

𝑥 ∈ ±1 𝑛

𝑦 ∈ ±1 𝑛

Fourier Growth of Communication Protocols

Bob

Alice and Bob exchange 𝑑 bits of communication and output a bit.

Their protocol defines a function 𝐹: ±1 𝑛 × ±1 𝑛 → {±1}

They attempt to compute an XOR lifted function:
Let 𝑔: ±1 𝑛 → ±1 be a Boolean function (can be partial)
They want to compute 𝑔 𝑥 ⊙ 𝑦 where 𝑥 ⊙ 𝑦 is the bitwise product (XOR) of the strings

To succeed for any 𝑧 in the domain of 𝑔, 𝑔 𝑧 should be equal to 𝐄𝐱,𝐲 𝐹 𝐱, 𝐲 𝐱 ⊙ 𝐲 = 𝑧]

➔ Fourier growth of the folded function ℎ 𝑧 = 𝐄𝐱,𝐲 𝐹 𝐱, 𝐲 𝐱 ⊙ 𝐲 = 𝑧]

𝑥 ∈ ±1 𝑛

𝑦 ∈ ±1 𝑛

Alice
𝑥 ∈ ±1 𝑛

Fourier Growth of Communication Protocols
Alice and Bob exchange 𝑑 bits of communication and output a bit.
Their protocol defines a function 𝐹: ±1 𝑛 × ±1 𝑛 → {±1}.
Let ℎ 𝑧 = 𝐄𝐱,𝐲 𝐹 𝐱, 𝐲 𝐱 ⊙ 𝐲 = 𝑧]

Theorem [GRT21]: 𝐿1,𝑘(ℎ) ≤ 𝑂 𝑑 𝑘

Theorem [GSTW23]: 𝐿1,1(ℎ) ≤ 𝑑, 𝐿1,2(ℎ) ≤ 𝑑3/2 log 𝑛 𝑂 1

Applications:

• New Proof for Ω 𝑛 randomized communication complexity of Gap-Hamming-Problem
[Chakrabarti, Regev’10]

• XOR-lift of Forrelation2:

• Requires ෩Ω(𝑛1/3) randomized communication complexity
• Can be computed in the simultaneous model using log(𝑛) quantum communication,

where each player implements an efficient quantum circuit of size polylog(𝑛) .

Open Problem

• Show 𝐿1,2(ℎ) ≤ 𝑑 log 𝑛 𝑂 1

• Show 𝐿1,𝑘(ℎ) ≤ 𝑂(√𝑑 log 𝑛)𝑘 for all 𝑘

• The above conjecture is implied by lifting with any constant-size
gadgets (or even log-log size gadgets).

Summary

• Fourier 𝐿1 degree-𝑘 sparsity (low 𝐿1,𝑘) as a ubiquitous phenomenon

• Separates quantum from classical query algorithms.

• Implies new oracle separations.

• Separates quantum from classical communication.

• Is useful for the design of pseudorandom generators for circuits

... and the design of pseudorandom generators against small space.

Connections to Open Problems:

• RL vs L

• Lifting with constant size gadgets

• PRGs and average-case lower bounds for AC0[⊕], ACC0

Thank You!

	Slide 1
	Slide 2: Lectures 3 & 4
	Slide 3
	Slide 4: The Black-Box / Query Model
	Slide 5: The Decision Tree Model
	Slide 6: The Randomized Decision Tree Model
	Slide 7: Quantum Query Complexity
	Slide 8: Quantum Query Complexity
	Slide 9: Quantum Advantage in Query Model
	Slide 10
	Slide 11: Recall: Discrete Fourier Analysis 101
	Slide 12: Tails and Low-Degree Approximation Equivalence
	Slide 13
	Slide 14: Exponentially Small Fourier Tails
	Slide 15: Exponentially Small Fourier Tails
	Slide 16: Correlation with Parity
	Slide 17: Different Notions of Fourier Concentration
	Slide 18
	Slide 19: Separation between Quantum and Randomized Query Algorithms
	Slide 20: The Forrelation Problem [Aaronson’09]
	Slide 21: Quantum Algorithm for 2-Fold Forrelation
	Slide 22: Bounded Depth Circuits
	Slide 23: What do we know about constant depth circuits (AC0)?
	Slide 24: The Difference between Quantum Log Time and AC0
	Slide 25: Application
	Slide 26: Distinguishing between Distributions
	Slide 27: Sampling Forrelated Pairs
	Slide 28: The Fourier Expansion
	Slide 29: Fourier Expansion: a Bridge between Discrete and Continuous Settings
	Slide 30: Fourier Analytical Approach – First Attempt
	Slide 31: Viewing z ~ cap G as a result of a random walk
	Slide 32: Viewing z ~ cap G as a result of a random walk
	Slide 33: Proof by Picture
	Slide 34: Base Case
	Slide 35: General Case: Reduction to Base Case
	Slide 36: Recap
	Slide 37: Exponentially Small Fourier Tails
	Slide 38: Exponentially Small Fourier Tails
	Slide 39: Sparse Polynomial Approximations
	Slide 40: Known Bounds on cap L sub , 1,k end subscript , open paren f , close paren equals sum over open paren cap S : absolute value cap S , end absolute value equals k end summation of absolute value f hat open paren cap S , close paren , end absolute
	Slide 41: Proof Overview – cap L sub , bold 1 ,bold 1 end subscript for Decision Trees [OS’07]
	Slide 42: Proof Overview – cap L sub , bold 1 ,bold 2 end subscript for Decision Trees [T’20]
	Slide 43: Applications to Pseudo-randomness
	Slide 44: Applications to Pseudo-randomness
	Slide 45: PRG Construction
	Slide 46: Open Problem
	Slide 47: Circuit Complexity Frontier
	Slide 48: How broad are Sparse Polynomial Approximations?
	Slide 49: Circuit Complexity assuming Conjecture
	Slide 50
	Slide 51: Motivating Question: RL vs. L
	Slide 52: (Read-Once Oblivious) Branching Programs
	Slide 53: PRGs for Branching Programs
	Slide 54: Our Main Structural Result
	Slide 55: Open Problem
	Slide 56: Fourier Growth of Communication Protocols
	Slide 57: Fourier Growth of Communication Protocols
	Slide 58: Fourier Growth of Communication Protocols
	Slide 59: Fourier Growth of Communication Protocols
	Slide 60: Open Problem
	Slide 61: Summary

