

Analysis of Boolean Functions: Foundations and Applications to TCS

Avishay Tal (UC Berkeley)

Lectures 3 & 4

Lectures 3 & 4

Main character: **Fourier Growth** – a complexity measure for Boolean functions that captures the ability to *aggregate weak k-wise correlations in the input.*

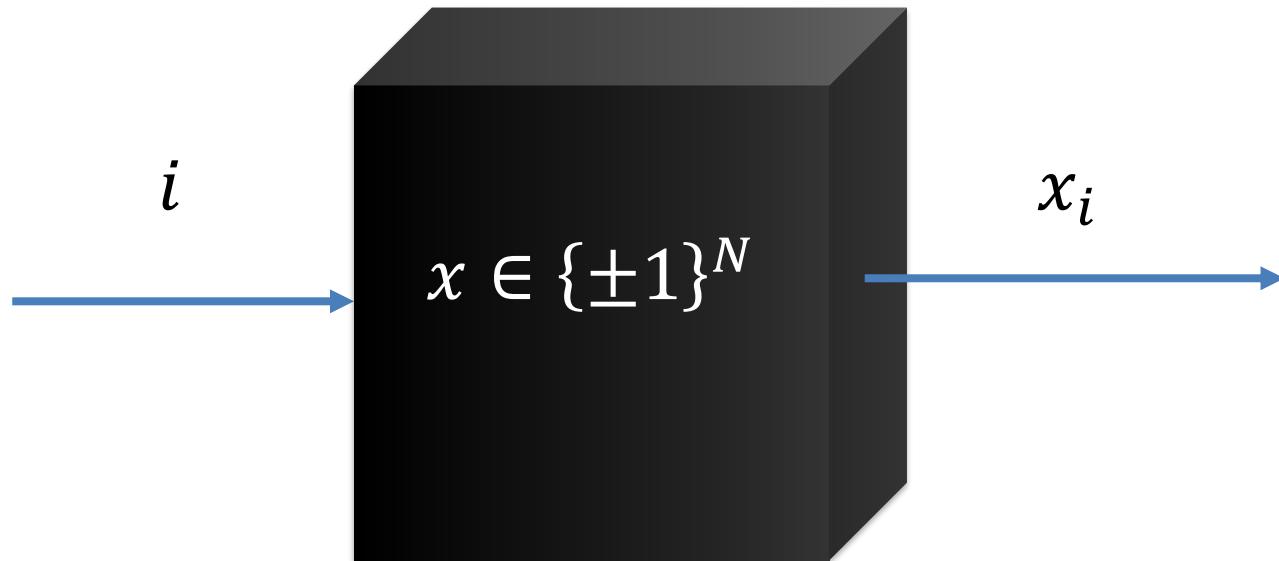
Applications:

1. Quantum Advantage
2. Pseudo-randomness
3. Lower Bounds

Quantum Advantage:

For which tasks do **quantum** algorithms
provably outperform **classical** algorithms?

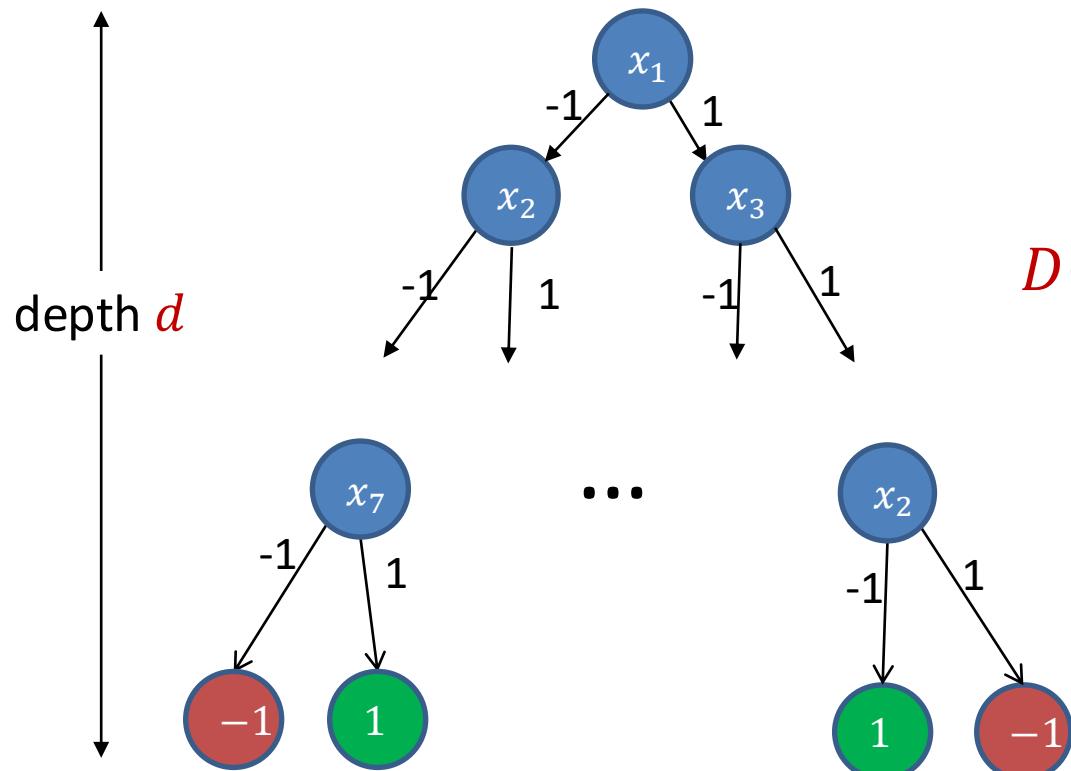
The Black-Box / Query Model



Typical Question: Does the black-box satisfy a property or not?

Query Complexity: How many queries (possibly adaptive) are needed to determine the property?

The Decision Tree Model



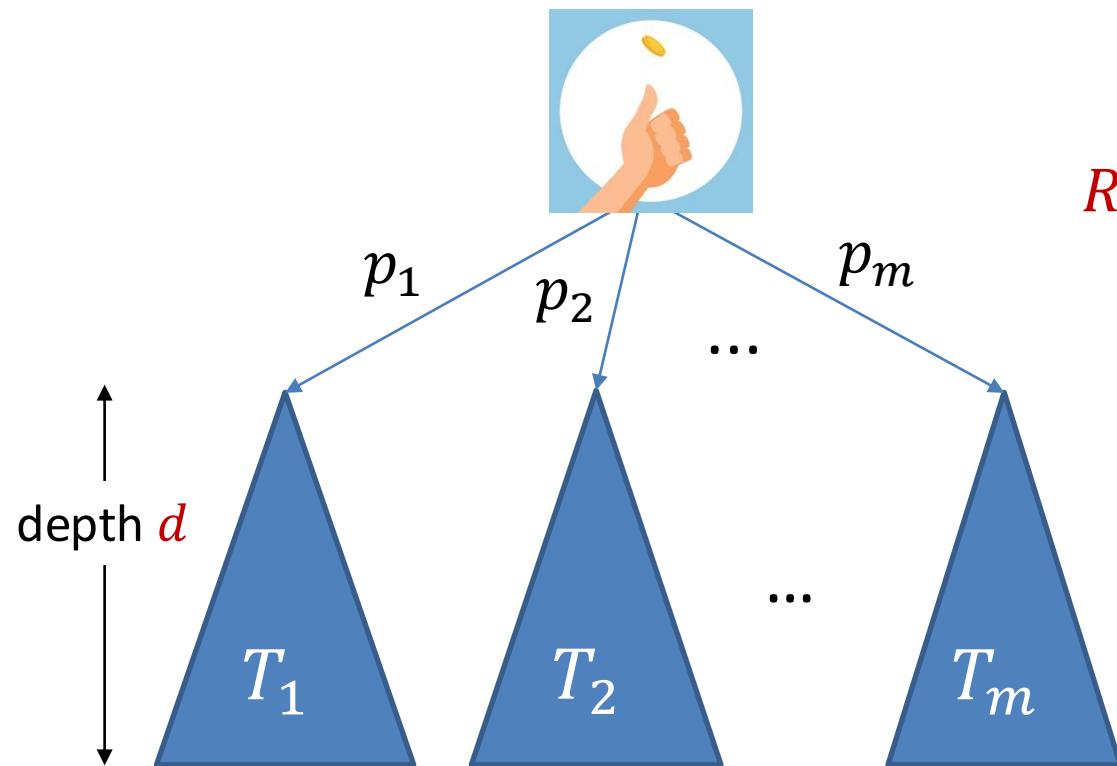
$$f: \{-1,1\}^N \rightarrow \{-1,1\}$$

$D(f)$ = minimal depth of a decision tree computing f
= deterministic query complexity of f

The Randomized Decision Tree Model

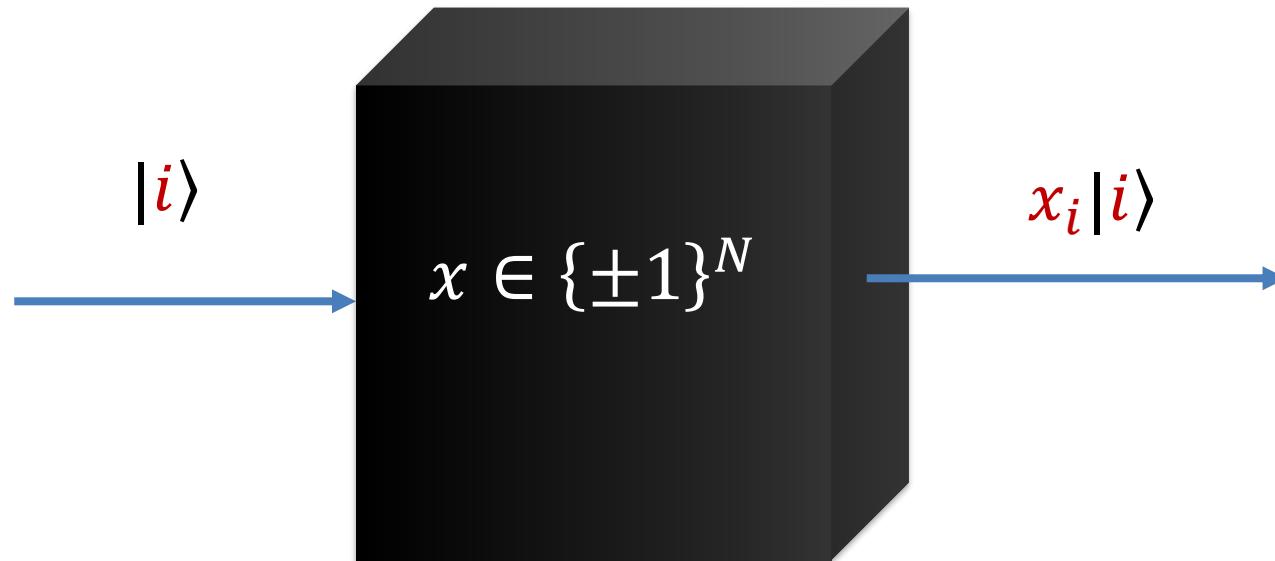
Randomized decision tree of depth d : a distribution over deterministic decision trees of depth at most d .

We say that a randomized decision tree computes f if its output equals $f(x)$ with probability at least $\frac{2}{3}$ for all $x \in \{-1,1\}^N$



$R(f)$ = minimal depth of a randomized decision tree computing f
= randomized query complexity of f

Quantum Query Complexity



A query to the input applies the unitary transformation O_x that maps $|i\rangle \rightarrow x_i|i\rangle$

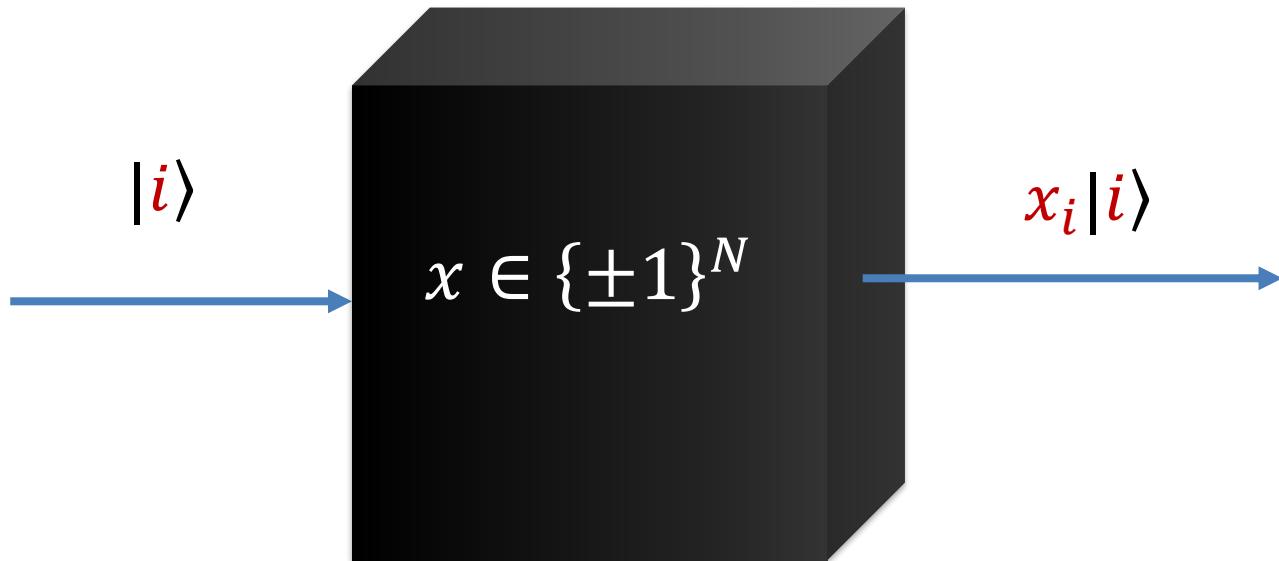
A t -query quantum algorithm applies

$$U_{t+1} O_x U_t \dots O_x U_3 O_x U_2 O_x U_1 |0\rangle$$

where U_1, \dots, U_{t+1} are unitary transformations that do not depend on x .

Finally: measure the state \rightarrow accept/reject based on outcome.

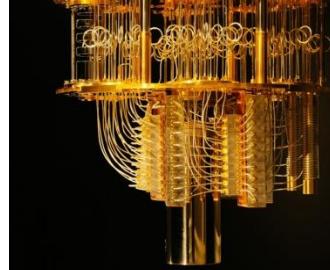
Quantum Query Complexity



We say that a quantum query algorithm computes f if its output equals $f(x)$ with probability at least $\frac{2}{3}$ for all $x \in \{-1,1\}^N$

$Q(f) =$ minimal number of queries of a
quantum query algorithm computing f
 $=$ quantum query complexity of f

Quantum Advantage in Query Model



Are quantum algorithms superior to randomized (or deterministic) algorithms in the query model?

[Grover'96]: Quadratic speed-up

[Aaronson, Ben-David, Kothari'16, T'20, Bansal, Sinha'21, Sherstov, Storozhenko, Wu'21]: Super-quadratic speed-ups!

Constructed a **total** function f_{cs} with $R(f_{cs}) \geq \tilde{\Omega}(Q(f_{cs})^3)$

[Beals, Buhrman, Cleve, Mosca, de Wolf'98, Aaronson, Ben-David, Kothari, Rao, T' 21]:

For **total** functions $f: \{\pm 1\}^N \rightarrow \{\pm 1\}$ **at most polynomial speed-ups**:

$$R(f) \leq D(f) \leq O(Q(f)^4)$$

For **partial** functions $f: A \rightarrow \{-1,1\}$, $A \subseteq \{-1,1\}^N$ exponential separations exist **[Simon'94, Shor'94, Childs, Cleve, Deotto, Farhi, Gutmann, Spielman'03, Aaronson, Ambainis'15]**, e.g. $Q(f) = O(1), R(f) = \sqrt{N}$

Motivation:

Identify a property that separates
quantum from classical (query) algorithms

Recall: Discrete Fourier Analysis 101

The Fourier transform of a Boolean function f naturally defines a distribution D_f over sets $S \subseteq \{1, \dots, n\}$:

The probability to sample S from D_f equals $\hat{f}(S)^2$.

Denote by $\mathbf{W}^k[f] = \Pr_{S \sim D_f}[|S| = k] = \sum_{S:|S|=k} \hat{f}(S)^2$
Fourier Weight

Denote by $\mathbf{W}^{\geq k}[f] = \Pr_{S \sim D_f}[|S| \geq k] = \sum_{S:|S|\geq k} \hat{f}(S)^2$
Fourier Tail

Tails and Low-Degree Approximation Equivalence

Let $f: \{-1,1\}^n \rightarrow \mathbb{R}$. The truncated Fourier expansion of f at level k is a degree k polynomial defined by

$$f^{\leq k}(x) = \sum_{S: |S| \leq k} \hat{f}(S) \cdot \prod_{i \in S} x_i$$

By Parseval: $\mathbf{E}_x \left[(f(x) - f^{\leq k}(x))^2 \right] = \mathbf{W}^{>k}[f]$.

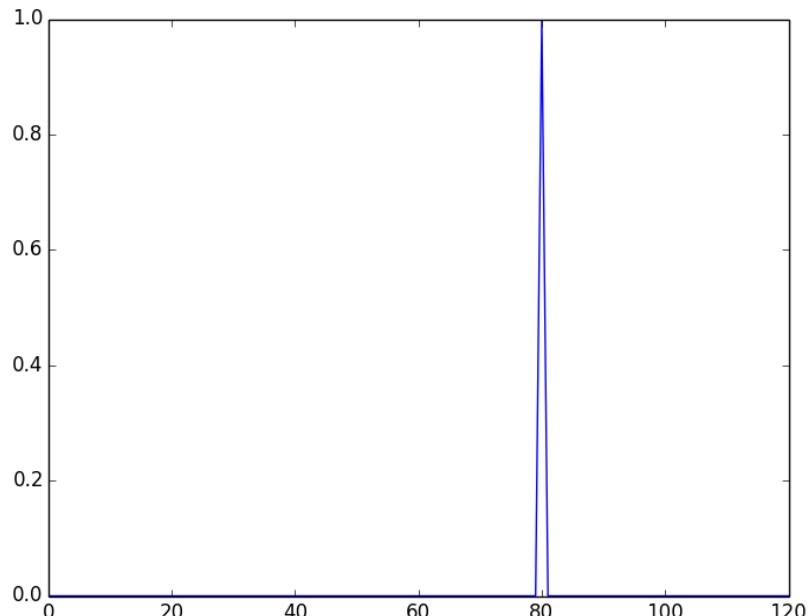
By Parseval: this is the best \mathbf{L}_2 -approx. of f among degree k polys.

f has a degree- k \mathbf{L}_2 -approximation with error ε iff $\mathbf{W}^{>k}[f] \leq \varepsilon$

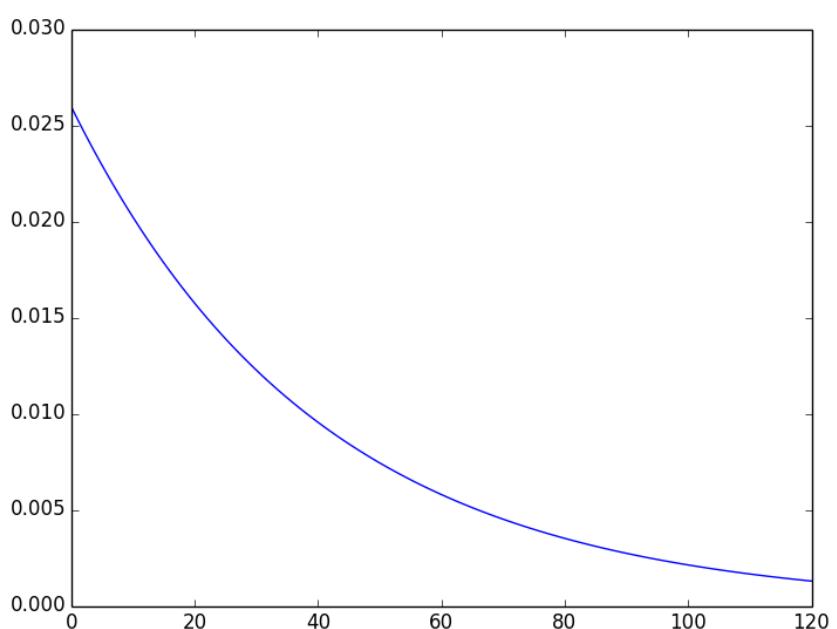
$$\text{Parity}(x_1, \dots, x_n) = x_1 \cdot x_2 \cdot \dots \cdot x_n$$

$$\text{Majority}(x_1, \dots, x_n) = \text{sign}\left(\sum_i x_i\right)$$

W^k [Parity]

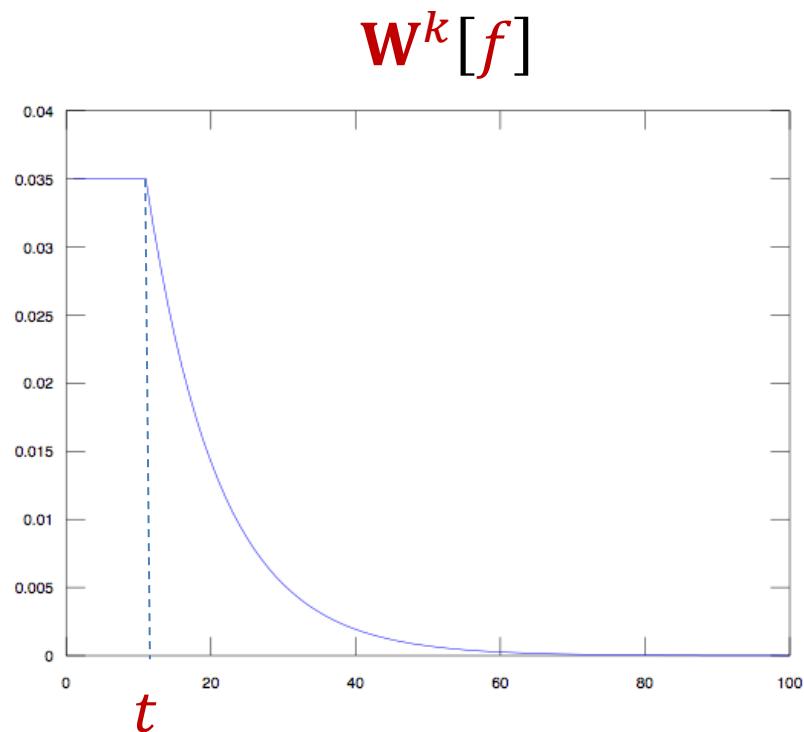


W^k [Majority]



Exponentially Small Fourier Tails

Definition: f has **ESFT(t)** if for all k : $W^{\geq k}[f] \leq e^{-k/t}$



Exponentially Small Fourier Tails

Definition: f has **ESFT(t)** if for all k : $W^{\geq k}[f] \leq e^{-k/t}$

Several well-studied classes of Boolean functions have **ESFT(t)**

1. CNFs / DNFs formulae	[H'86, LMN'89]	$t = O(\log n)$
2. Formulae of size s	[R'11]	$t = O(\sqrt{s})$
3. Read-Once formulas	[IK'14]	$t = O(n^{0.31})$
4. Constant-depth circuits	[T'14]	$t = \text{polylog}(n)$
5. Fncs with max-sensitivity s	[GSTW'16]	$t = O(s)$

“Excellent Low-Degree Approximations”

Equivalently: f in **ESFT(t)** if

$$\forall \epsilon > 0 \quad \exists p: \deg(p) \leq t \cdot \log(1/\epsilon), \quad \|p - f\|_2 \leq \epsilon.$$

Correlation with Parity

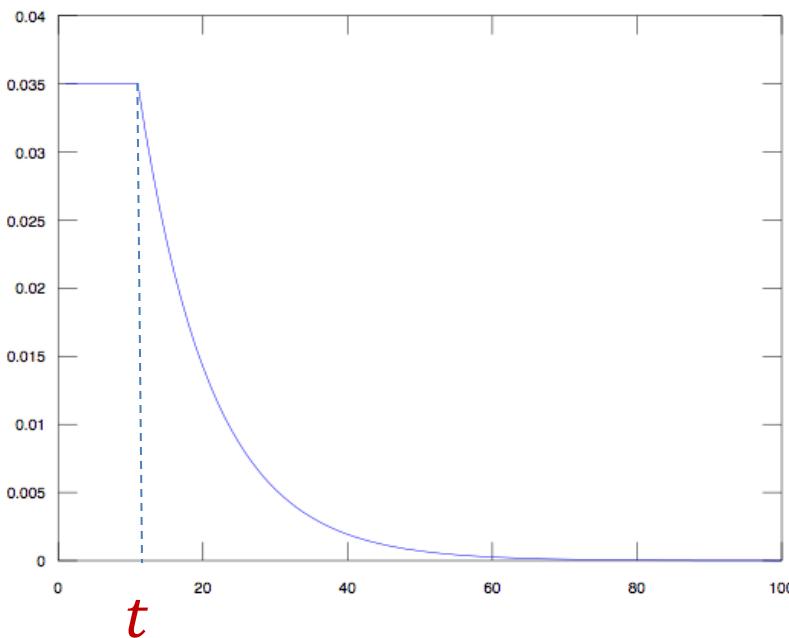
Observation: if f in $\text{ESFT}(\mathbf{t})$, then

$$\mathbf{E}_x[f(x) \cdot \text{Parity}_n(x)] \leq e^{-n/2t}$$

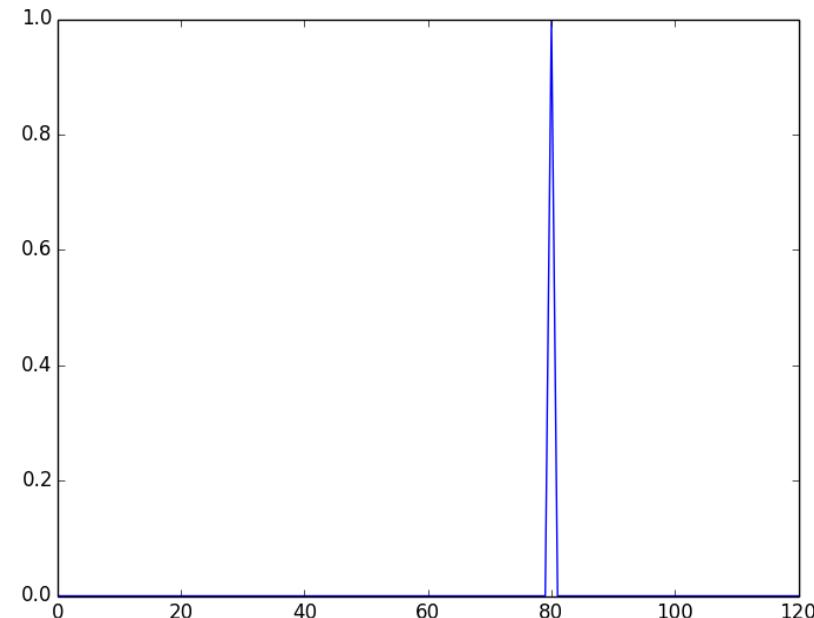
Proof:

$$|\mathbf{E}_x[f(x) \cdot \text{Parity}_n(x)]| = |\hat{f}(\{1, \dots, n\})| = \sqrt{\mathbf{W}^n[f]} \leq \sqrt{e^{-n/t}}$$

$$\mathbf{W}^k[f]$$



$$\mathbf{W}^k[\text{Parity}]$$



Different Notions of Fourier Concentration

TFAE:

- f has **Exponentially Small Fourier Tails**: $f \in \mathbf{ESFT}(t)$
- f has bounded **Fourier k-moments**:

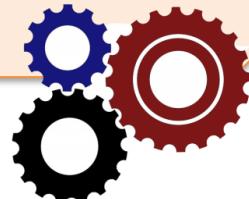
$$\forall k: \mathbf{E}_{S \sim D_f} \left[\binom{|S|}{k} \right] \leq O(t)^k$$

- f **simplifies under random restrictions**:

$$\forall p, k : \Pr_{\substack{p \text{ random} \\ \text{restriction}}} [\deg(f_{\text{restricted}}) \geq k] \leq O(pt)^k.$$

and they imply **using Booleanity**
 L_1 degree-k sparsity:

$$\sum_{S: |S|=k} |\hat{f}(S)| = O(t)^k$$



Theorem: Let $f: \{-1,1\}^n \rightarrow \{-1,1\}$. Then,

$$\forall k: \sum_{S:|S|=k} |\hat{f}(S)| \leq 2^k \cdot \mathbf{E}_{S \sim D_f} \left[\binom{|S|}{k} \right]$$

Proof: Move to iPad

Separation between Quantum and Randomized Query Algorithms

First Try: Consider polynomial degree **X**

Problem: Both models are approximated by low-degree polynomials... [Nisan, Szegedy '92] [Beals, Buhrman, Cleve, Mosca, de Wolf '98]

But these polynomials are very different!

$L_{1,k}$ of a quantum query algorithm making $k/2$ queries can be $\sqrt{N^{k-1}}$

$L_{1,k}$ of a randomized query algorithm making d queries is at most $\sqrt{d^k}$

The Forrelation Problem [Aaronson'09]

The input to the (2-Fold) **Forrelation Problem** are two vectors

$$\mathbf{x}, \mathbf{y} \in \{-1,1\}^{N/2}.$$

The 2-Fold Forrelation Problem: distinguish between

[Yes Instances] : $(\mathbf{x}, \mathbf{y}) : \frac{\langle \mathbf{x}, \mathbf{H}\mathbf{y} \rangle}{N/2} \geq \tau$ Pairwise correlations $\pm \frac{\tau}{\sqrt{N}}$

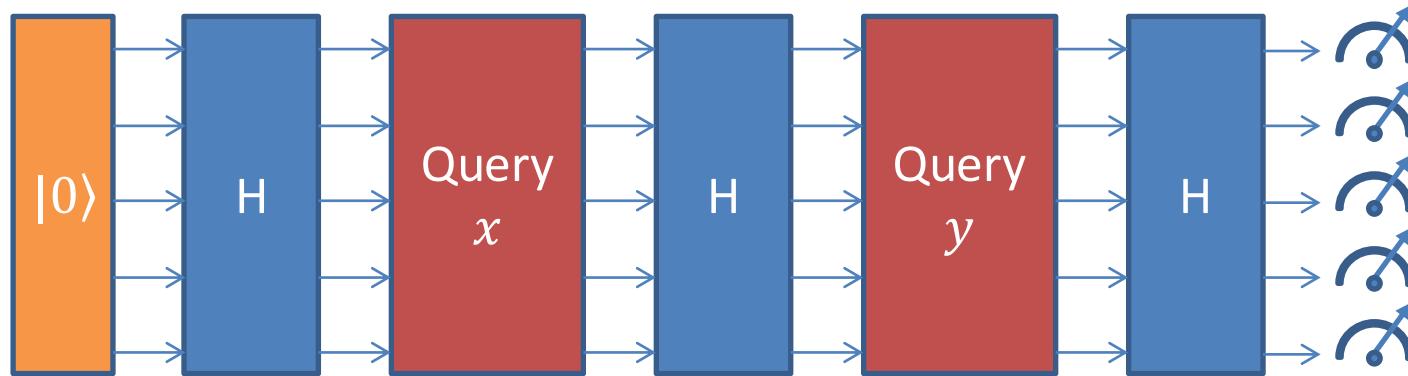
[No Instances] : $(\mathbf{x}, \mathbf{y}) : \frac{\langle \mathbf{x}, \mathbf{H}\mathbf{y} \rangle}{N/2} \leq \tau/2$ No pairwise correlations

$$\frac{\langle \mathbf{x}, \mathbf{H}\mathbf{y} \rangle}{N/2} = \frac{1}{N/2} \sum_{i=1}^{N/2} \sum_{j=1}^{N/2} \mathbf{x}_i \mathbf{H}_{i,j} \mathbf{y}_j$$

$$\mathbf{H}_{i,j} = \frac{(-1)^{i,j}}{\sqrt{N/2}}$$

Quantum Algorithm for 2-Fold Forrelation

[Aaronson'09]:



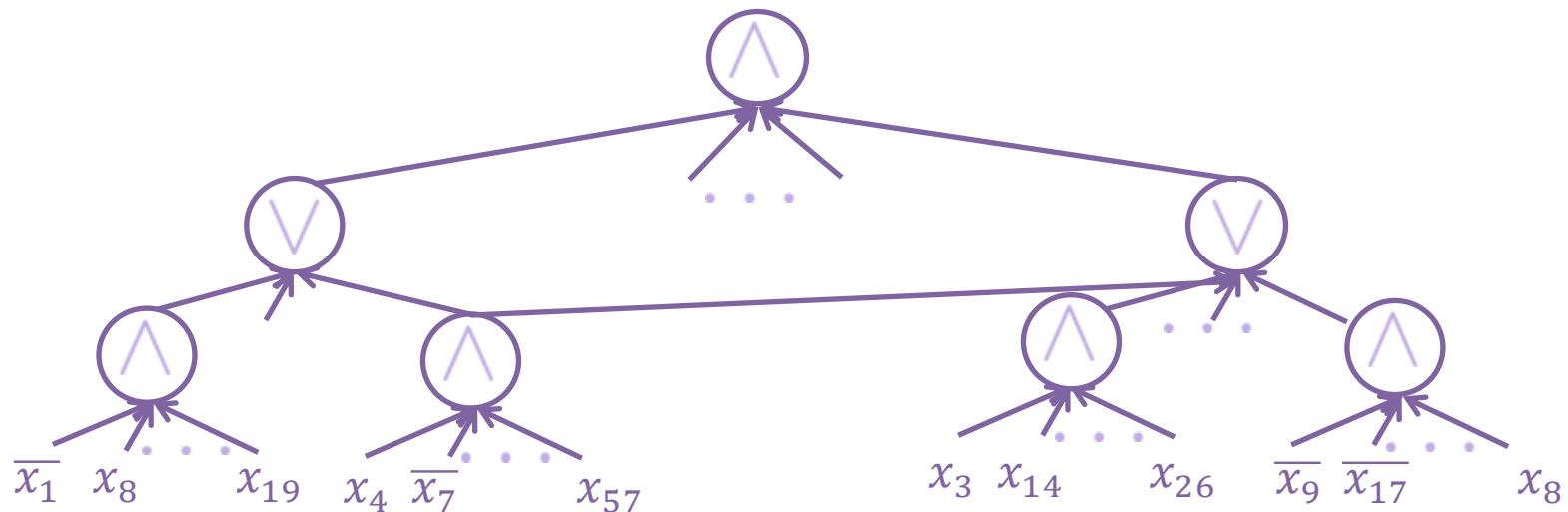
The probability of measuring the all 0's vector

$$\left(\frac{1}{N/2} \sum_{i=1}^{N/2} \sum_{j=1}^{N/2} x_i H_{i,j} y_j \right)^2 = \left(\frac{\langle x, Hy \rangle}{N/2} \right)^2$$

Main Technical Result [Raz-T'19]:

To solve Forrelation, f must have large $L_{1,2}(f)$.

Bounded Depth Circuits



AC⁰

- $\text{poly}(N)$ gates (**size** of the circuit)
- depth $d = O(1)$

Motivating Question: Separate **Quantum Log Time** from **AC⁰**

→ Oracle Separation of **BQP** (Quantum Polynomial Time) from **PH** (The Polynomial Hierarchy)

What do we know about constant depth circuits (AC^0)?

[Furst-Saxe-Sipser'81, Ajtai'83, Yao'85, Håstad'86]:

- The N -variate **Parity** function is not in AC^0 .

Proof technique:

- AC^0 circuits can be well-approximated (in ℓ_2) by **low-degree polynomials** (over \mathbb{R}). [Håstad'86, LMN'89]
- **Parity** cannot.

Potential problem with the approach:

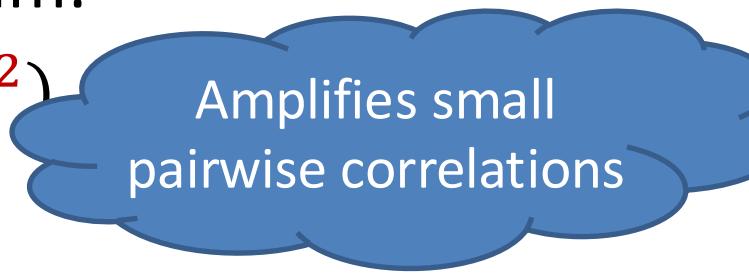
$O(\log N)$ time quantum algorithms are also well approximated by **low-degree polynomials**. [BBCMW'98]

The Difference between Quantum Log Time and AC^0

Both models are approximated by low-degree polynomials, but **these polynomials are very different!**

Quantum Log Time may require **dense** low-deg polynomials as in the case of **Aaronson's** algorithm:

Degree: 2, #(monomials): $\Theta(N^2)$

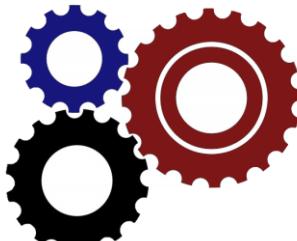


Amplifies small pairwise correlations

[T'17]: AC^0 have **sparse** low-degree approximations:

$\forall k: \#(\text{monomials of degree } k) \leq (\text{polylog } N)^k$

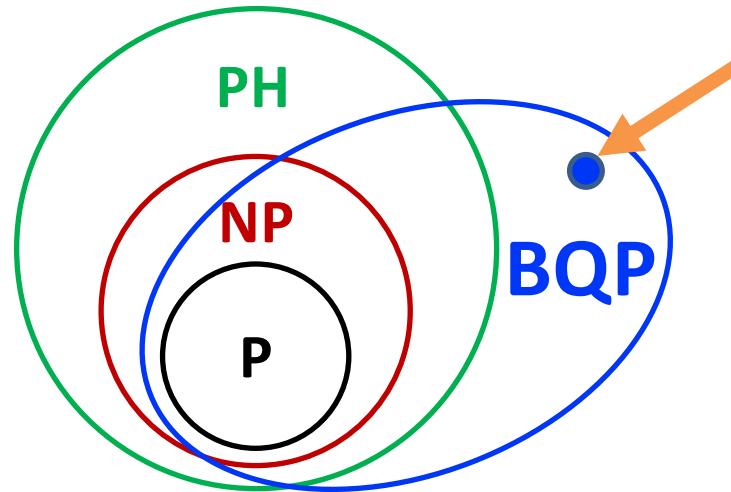
Does not amplify



Application

[Raz-T'19]:

\exists oracle A : $\mathbf{BQP}^A \not\subseteq \mathbf{PH}^A$



“Even if **P** were equal to **NP**, even making that strong assumption, that’s not going to be enough to capture (the power of) quantum computing.”

(Lance Fortnow)

Distinguishing between Distributions

$z \in \{-1, +1\}^N$
sampled
from the
“Forrelation”
distribution D

$z \in \{-1, +1\}^N$
sampled from
the uniform
distribution U

One of these boxes is selected at random & given to you.
Can you tell which one is it?

Sampling Forrelated Pairs

(Based on Aaronson's suggestion with some modifications)

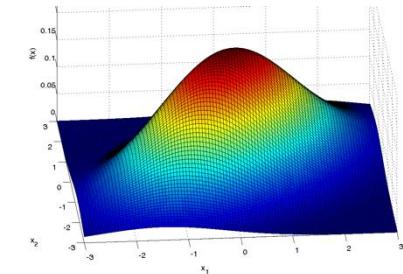
Gaussian dist G over $\mathbb{R}^N \rightarrow$ Discrete dist D over $\{-1,1\}^N$

The Gaussian distribution G :

Sample $x_1, \dots, x_{N/2}$ i.i.d. $\mathcal{N}(0, \sigma^2)$

$$\vec{y} = H \cdot \vec{x}$$

Output $z = (x_1, \dots, x_{N/2}, y_1, \dots, y_{N/2})$.



$$\sigma^2 = 1/O(\log N)$$

The Discrete distribution D :

1. **Draw $z \sim G$.** If $z \notin [-1,1]^N \rightarrow$ abort
2. **Randomized Rounding:** For $i = 1, \dots, N$, draw independently $z'_i \in \{-1,1\}$ with $E[z'_i] = z_i$.

The Fourier Expansion

The Fourier expansion of $f: \{-1,1\}^N \rightarrow \{-1,1\}$:

$$f(\mathbf{x}) = \sum_{S \subseteq \{1, \dots, N\}} \hat{f}(S) \cdot \prod_{i \in S} x_i$$

$-1 \equiv \text{True}$
 $+1 \equiv \text{False}$

For example: AND of 2 variables

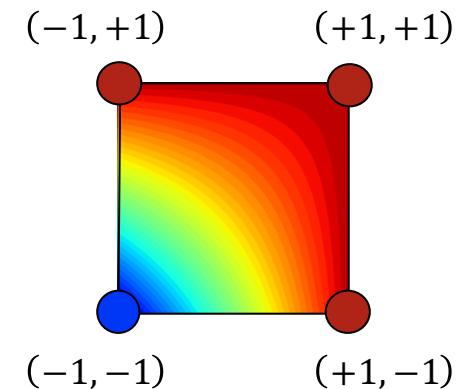
$$\text{AND}(x_1, x_2) = \frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1x_2$$

$$\text{AND}(+1, +1) = +\frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = +1.$$

$$\text{AND}(+1, -1) = +\frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = +1.$$

$$\text{AND}(-1, +1) = +\frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = +1.$$

$$\text{AND}(-1, -1) = +\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = -1.$$



Fourier Expansion: a Bridge between Discrete and Continuous Settings

The Fourier expansion of $f: \{-1,1\}^N \rightarrow \{-1,1\}$:

$$f(\textcolor{red}{x}) = \sum_{S \subseteq \{1, \dots, N\}} \hat{f}(S) \cdot \prod_{i \in S} x_i$$

Discrete

Gaussian

Lemma: $\mathbf{E}_{z' \sim D}[f(z')] \approx \mathbf{E}_{z \sim G}[f(z)]$

Fact:

$$\mathbf{E}_{u \sim U}[f(u)] = f(\vec{0})$$

Enough to show: For any f in \mathbf{AC}^0

$$\mathbf{E}_{z \sim G}[f(z)] \approx f(\vec{0})$$

Fourier Analytical Approach – First Attempt

$$\begin{aligned} \mathbf{E}_{z \sim G}[f(z)] - f(\vec{0}) &= \\ &= \sum_{|S| \geq 1} \hat{f}(S) \cdot \mathbf{E}_{z \sim G} \left[\prod_{i \in S} z_i \right] && \text{(By definition)} \\ &= \sum_{\ell=1}^{N/2} \sum_{|S|=2\ell} \hat{f}(S) \cdot \mathbf{E}_{z \sim G} \left[\prod_{i \in S} z_i \right] && \text{(odd moments = 0)} \\ &\leq \sum_{\ell=1}^{N/2} \sum_{|S|=2\ell} |\hat{f}(S)| \cdot \sigma^{2\ell} \cdot \frac{\ell!}{\sqrt{N/2}^\ell} && \text{(Isserlis' Theorem)} \\ &\leq \sum_{\ell=1}^{N/2} \text{polylog}(N)^{2\ell} \cdot \sigma^{2\ell} \cdot \frac{\ell!}{\sqrt{N/2}^\ell} \end{aligned}$$

Contribution of first $\tilde{O}(\sqrt{N})$ terms:
 $\sigma^2 \cdot \text{polylog}(N)/\sqrt{N}$

Contribution of larger terms?

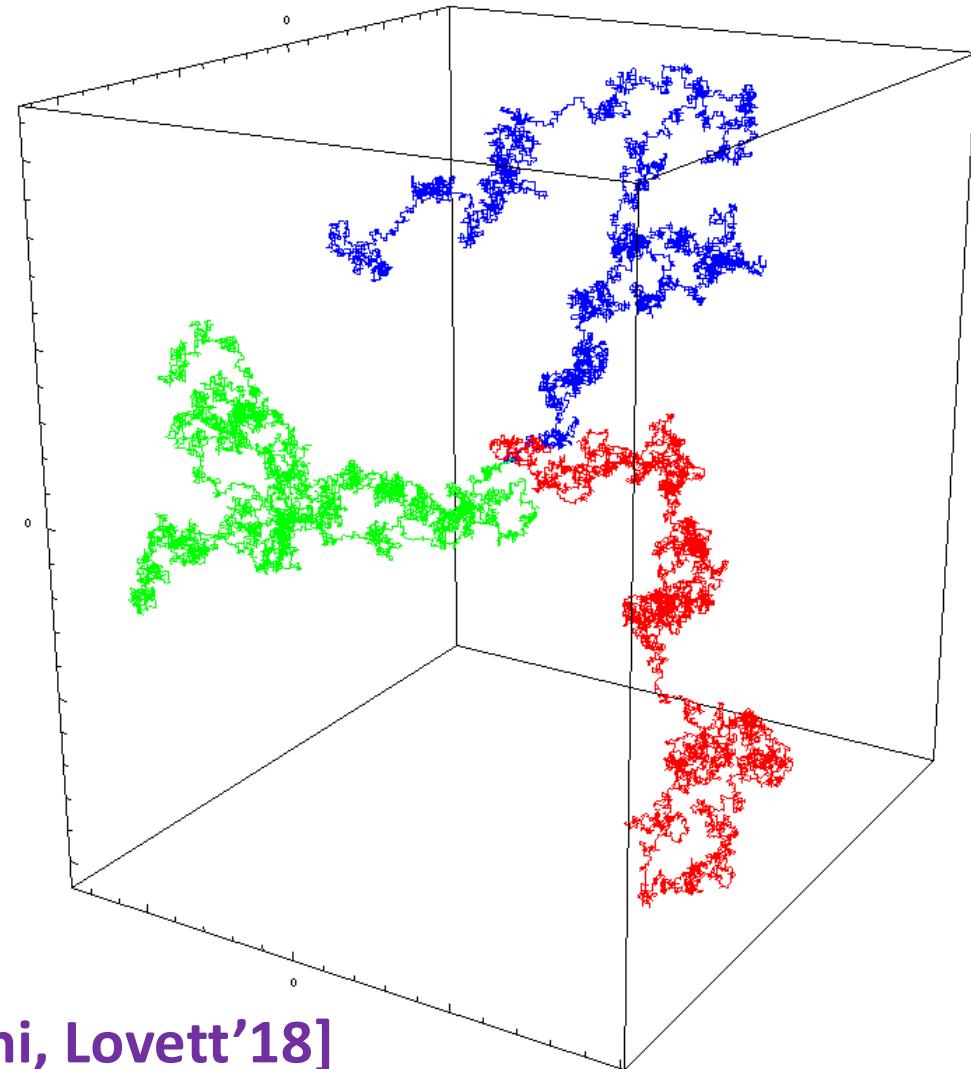
Viewing $z \sim G$ as a result of a random walk

A Thought Experiment:

Instead of sampling $z \sim G$ at once, we sample t vectors $z^{(1)}, \dots, z^{(t)} \sim G$ independently, and take

$$z = \frac{1}{\sqrt{t}} \cdot (z^{(1)} + \dots + z^{(t)})$$

Based on the work of
[Chattopadhyay, Hatami, Hosseini, Lovett'18]



Viewing $z \sim G$ as a result of a random walk

Sample t vectors $z^{(1)}, \dots, z^{(t)} \sim G$

Define $t + 1$ hybrids:

- $H_0 = \vec{0}$
- For $i = 1, \dots, t$

$$H_i = \frac{1}{\sqrt{t}} \cdot (z^{(1)} + \dots + z^{(i)})$$

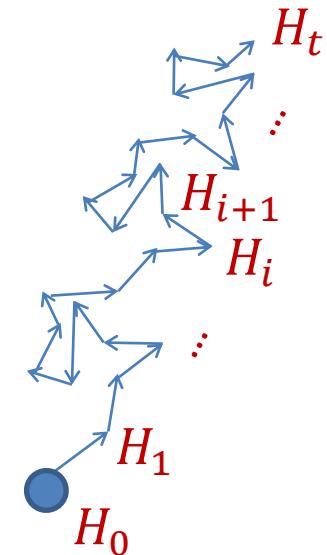
Observe: $H_t \sim G$.

Taking $t \rightarrow \infty$ yields a Brownian motion.

Suffices to take $t = \text{poly}(N)$ for our analysis.

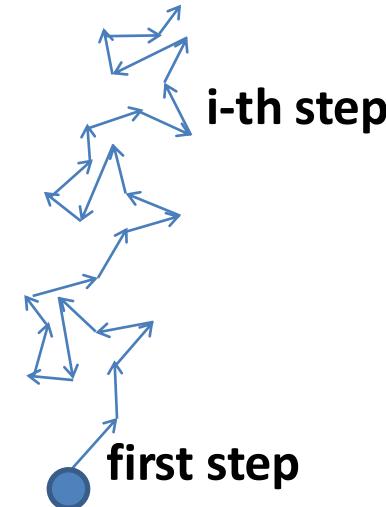
Claim: for $i = 0, \dots, t - 1$,

$$|\mathbf{E}[f(H_{i+1})] - \mathbf{E}[f(H_i)]| \leq \frac{\text{polylog}(N)}{t\sqrt{N}}.$$



Proof by Picture

[CHHL'18]: i -th step \approx first step,
using closure under restrictions.



First Step: Simple Fourier Analysis
Only second level matters.

Base Case

$$\begin{aligned} & \mathbf{E}[f(H_1)] - \mathbf{E}[f(H_0)] \\ &= \mathbf{E}_{z \sim G} \left[f\left(\frac{1}{\sqrt{t}} z\right) \right] - f(\vec{0}) \\ &= \sum_{\ell=1}^{N/2} \sum_{|S|=2\ell} \hat{f}(S) \cdot \mathbf{E}_{z \sim G} \left[\prod_{i \in S} \frac{1}{\sqrt{t}} z_i \right] \\ &\leq \sum_{\ell=1}^{N/2} \sum_{|S|=2\ell} |\hat{f}(S)| \cdot \frac{\sigma^{2\ell} \cdot \ell!}{t^\ell \cdot \sqrt{N/2}^\ell} \\ &\leq \sum_{\ell=1}^{N/2} \text{polylog}(N)^{2\ell} \cdot \frac{\sigma^{2\ell} \cdot \ell!}{t^\ell \cdot \sqrt{N/2}^\ell} \\ &\leq \frac{\text{polylog}(N)}{t\sqrt{N}} + o\left(\frac{1}{t\sqrt{N}}\right) \quad (\text{for } t \text{ large enough}) \end{aligned}$$

General Case: Reduction to Base Case

Lemma [CHHL'18]: for any fixed $v \in [-0.5, 0.5]^N$ the fnc

$$g(z) \stackrel{\text{def}}{=} f(v + z) - f(v)$$

can be written as $E_{\rho}[f_{\rho}(2 \cdot z) - f_{\rho}(\vec{0})]$ where f_{ρ} is a random restriction of f (whose marginals depend on v).

Analysis of step $i+1$:

Conditioned on $H_i \in [-0.5, 0.5]^N$ (happens whp):

$$\begin{aligned} & |E[f(H_{i+1})] - E[f(H_i)]| \\ & \leq \left| E\left[f\left(H_i + \frac{1}{\sqrt{t}} \cdot z^{(i+1)}\right) - f(H_i)\right] \right| \\ & \leq \left| E\left[f_{\rho}\left(\frac{2}{\sqrt{t}} \cdot z^{(i+1)}\right) - f_{\rho}(\vec{0})\right] \right| \leq \frac{\text{polylog}(N)}{t\sqrt{N}} \end{aligned}$$

Recap

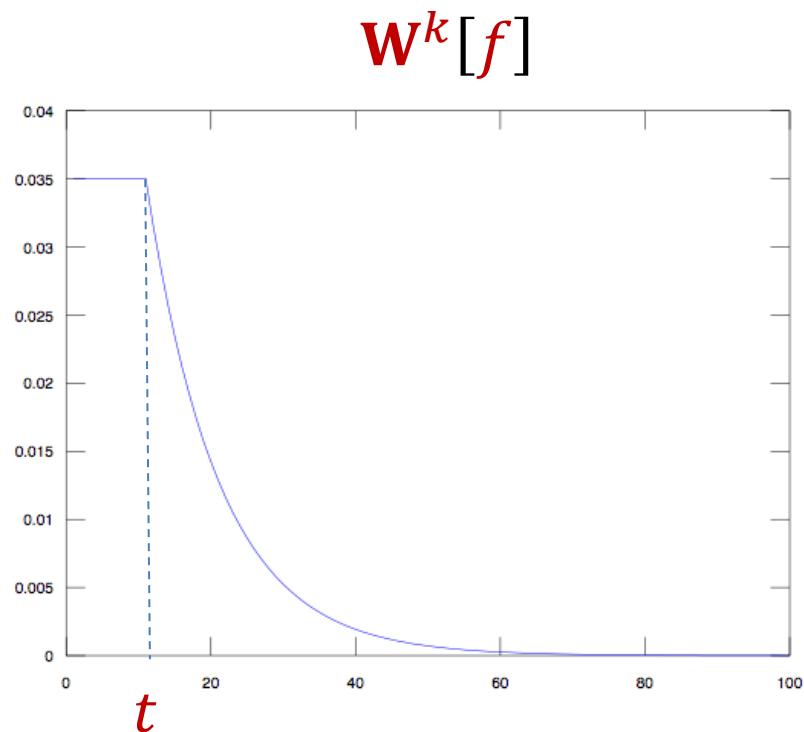
Main character: **Fourier Growth** – a complexity measure for Boolean functions that captures the ability to *aggregate weak k-wise correlations in the input.*

Applications:

1. Quantum Advantage
2. Pseudo-randomness
3. Lower Bounds

Exponentially Small Fourier Tails

Definition: f has **ESFT(t)** if for all k : $W^{\geq k}[f] \leq e^{-k/t}$



Exponentially Small Fourier Tails

Definition: f has **ESFT(t)** if for all k : $W^{\geq k}[f] \leq e^{-k/t}$

Several well-studied classes of Boolean functions have **ESFT(t)**

1. CNFs / DNFs formulae	[H'86, LMN'89]	$t = O(\log n)$
2. Formulae of size s	[R'11]	$t = O(\sqrt{s})$
3. Read-Once formulas	[IK'14]	$t = O(n^{0.31})$
4. Constant-depth circuits	[T'14]	$t = \text{polylog}(n)$
5. Fncs with max-sensitivity s	[GSTW'16]	$t = O(s)$

“Excellent Low-Degree Approximations”

Equivalently: f in **ESFT(t)** if

$$\forall \epsilon > 0 \quad \exists p: \deg(p) \leq t \cdot \log(1/\epsilon), \quad \|p - f\|_2 \leq \epsilon.$$

Sparse Polynomial Approximations

Def'n: f in $L_1(t)$ if $\forall k: \sum_{S:|S|=k} |\hat{f}(S)| \leq t^k$

Theorem [T'14]: If f is a **Boolean** function

f in **ESFT(t)** \Rightarrow f in **L1(O(t))**

low degree approximations \Rightarrow “sparse” approximations

But the latter is a much broader class!

- **Parity** in $L_1(1)$. That is, **Parity** is sparse but of high degree.
- constant-width branching programs in $L_1(\text{polylog}(n))$ [CHRT'18]
- **Most** Boolean functions are in $L_1(O(1))$!!

Which functions do not have “sparse” approximations?

- **Majority** (Hardest function for this measure), **Forrelation**

Known Bounds on $L_{1,k}(f) = \sum_{S:|S|=k} |\hat{f}(S)|$

width- w DNFs/CNFs:

$$L_{1,k} \lesssim w^k$$

[Man95]

AC^0 circuits of size s and depth d :

$$L_{1,k} \lesssim (\log s)^{(d-1)k}$$

[T17]

Boolean functions with sensitivity s :

$$L_{1,k} \lesssim s^k$$

[GSTW16]

regular width- w read-1 branching programs:

$$L_{1,k} \lesssim (w)^k$$

[RSV13, LPV22]

width- w read-1 branching programs:

$$L_{1,k} \lesssim (\log n)^{wk}$$

[CHRT18]

degree- d polynomials over F_2 :

$$L_{1,k} \lesssim (2^d \cdot k)^k$$

[CHHL19]

depth- d (randomized) decision tree:

$$L_{1,k} \lesssim \tilde{O}(\sqrt{d})^k$$

[T20, SSW21]

depth- d (randomized) parity decision tree:

$$L_{1,k} \lesssim \tilde{O}(\sqrt{d})^k$$

[GTW21]

communication protocols of cost d :

$$L_{1,k} \lesssim d^k$$

[GRT21]

$$L_{1,1} \lesssim \sqrt{d}, \quad L_{1,2} \lesssim d^{3/2}$$

[GSTW23]

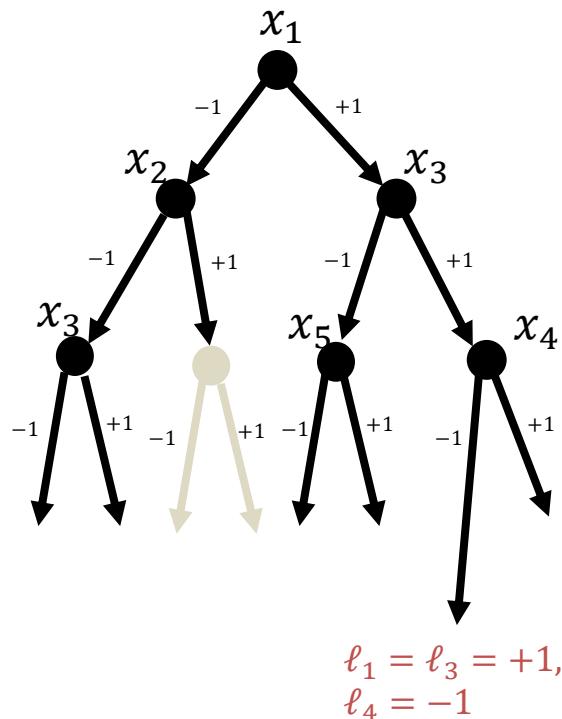
Quantum query algorithms with r -rounds q -queries per round:

$$L_{1,k} \lesssim (N^{\frac{1}{2} - \frac{1}{4r}} \cdot q)^k$$

[GSTW24]

Most bounds are of the form $L_{1,k} \lesssim t^k$ for some parameter t

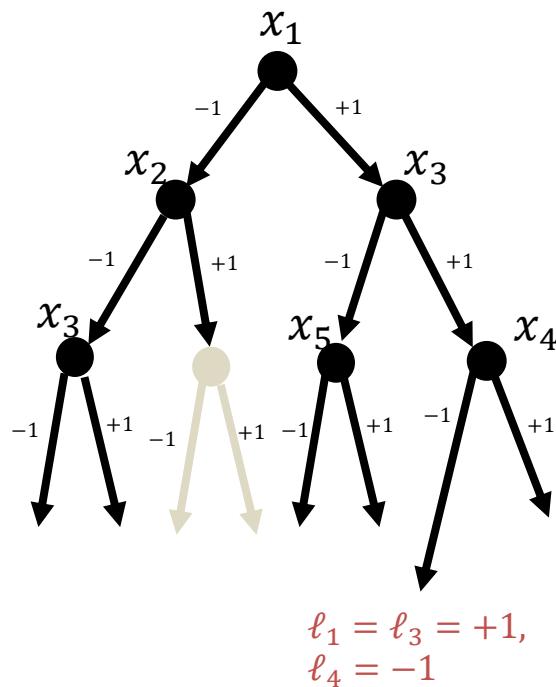
Proof Overview – $L_{1,1}$ for Decision Trees [OS'07]



- Let ℓ be a random root-to-leaf path
 - $\ell_i \in \{+1, -1\}$ iff x_i is queried in the path and fixed to ℓ_i
- Then

$$\begin{aligned}\hat{f}(\{i\}) &= \mathbf{E}_x[f(\mathbf{x}) \cdot \mathbf{x}_i] = \mathbf{E}_\ell[f(\ell) \cdot \mathbf{E}_{\mathbf{x} \sim \ell}[\mathbf{x}_i]] \\ &= \mathbf{E}_\ell[f(\ell) \cdot \ell_i]\end{aligned}$$
- By negating x_i in f , we assume $\hat{f}(\{i\}) \geq 0$
- By querying dummy variables, WLOG the decision tree is full
- Then $L_{1,1}(f) = \sum_i \hat{f}(\{i\}) = \mathbf{E}_x[f(\ell) \cdot \sum_i \ell_i] \leq \mathbf{E}_x[|\sum_i \ell_i|]$
- $\sum_i \ell_i$ depends only on the number of $+1/-1$'s on the path
 = the final state of a simple d -step drunkard walk
 $\mathbf{E}[|\sum_i \ell_i|] \approx \sqrt{d}$.

Proof Overview – $L_{1,2}$ for Decision Trees [T'20]



$$\hat{f}(\{i,j\}) = \mathbf{E}_x[f(x) \cdot x_i x_j] = \mathbf{E}_\ell[f(\ell) \cdot \ell_i \cdot \ell_j].$$

Can we assume $\hat{f}(\{i,j\}) \geq 0$?

Probably not. But we can write

$$L_{1,2}(f) = \sum_{i,j} |\hat{f}(\{i,j\})| = \sum_{i,j} a_{i,j} \cdot \hat{f}(\{i,j\})$$

for +1 coefficients $a_{i,j} = \text{sgn}(\hat{f}(\{i,j\}))$.

$$\text{Then } L_{1,2}(f) = \mathbf{E}_\ell[f(\ell) \cdot \sum_{i,j} a_{i,j} \cdot \ell_i \ell_j] \leq \mathbf{E}_\ell\left[\left| \sum_{i,j} a_{i,j} \cdot \ell_i \ell_j \right| \right]$$

$\left| \sum_{i,j} a_{i,j} \cdot \ell_i \ell_j \right| \sim \text{a random 1-D walk with variable step size}$

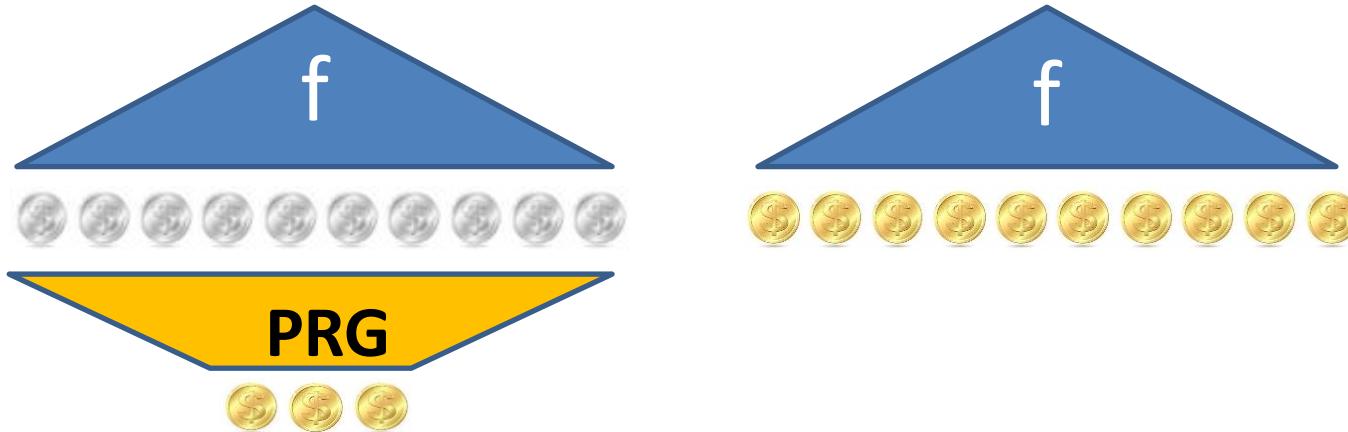
Reduces to $L_{1,1}$

Let $\ell^{(t)}$ be the evolution of ℓ after t queries.

If querying x_q in step $t+1$, then step size is

$$\left| \sum_{i,j} a_{i,j} \cdot \ell_i^{(t+1)} \ell_j^{(t+1)} - \sum_{i,j} a_{i,j} \cdot \ell_i^{(t)} \ell_j^{(t)} \right| = \left| \sum_j a_{q,j} \cdot \ell_j^{(t)} \right|$$

Applications to Pseudo-randomness



A distribution D over $\{\pm 1\}^n$ is **pseudorandom** for class C if

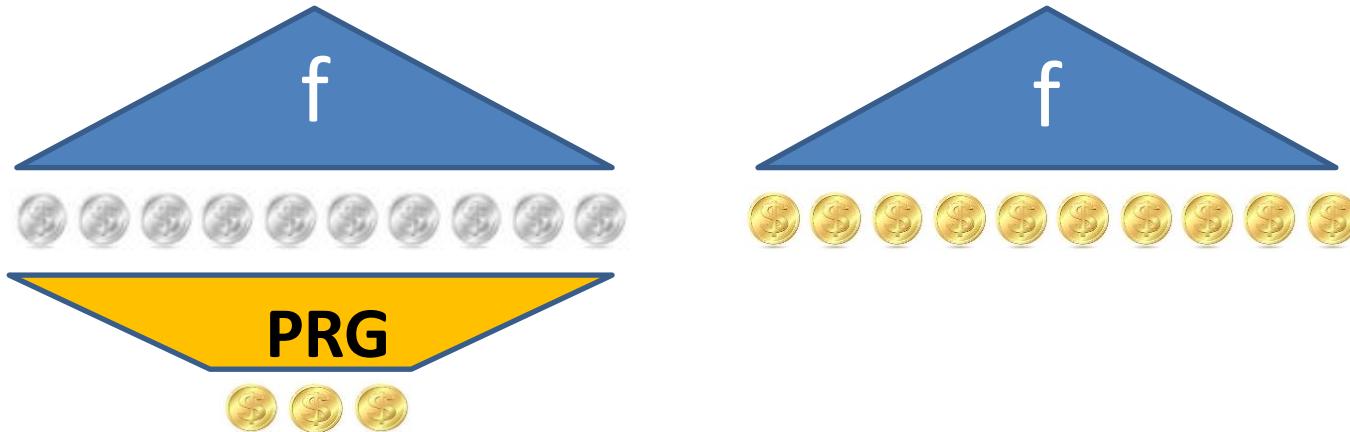
$$\forall f \in C: \quad \mathbf{E}_{x \sim D}[f(x)] \approx_{\varepsilon} \mathbf{E}_{x \sim U}[f(x)]$$

A pseudo-random generator (**PRG**) for C is a function

$$\text{PRG}: \{-1,1\}^s \rightarrow \{-1,1\}^n$$

such that $\text{PRG}(U_s)$ is pseudorandom for C .

Applications to Pseudo-randomness



[CHLT'19] $\forall t$: a pseudo-random generator (**PRG**) for all functions f with $L_{1,2}(f) \leq t$ (assuming same holds for subfunctions of f) with seed length $s = O(t^2)$.

Build on **[CHHL'18]**: a PRG assuming $L_{1,k}(f) \leq t^k$ for all k .

PRG Construction

Observe that in the Forrelation analysis, we only relied on pairwise correlation of Gaussians being smaller than $1/L_{1,2}(f)$.

Lemma [CHLT'19] : We can sample n Gaussians with pairwise correlation δ with only $O\left(\frac{1}{\delta^2} \cdot \log^2(n)\right)$ seed.

But this gives us just a “Fractional PRG”: a pseudorandom distribution D of points in \mathbb{R}^n that is indistinguishable to f from uniform on $\{-1, +1\}^n$, and such that $\mathbf{E}_{x \sim D}[x_i^2] \geq 1/\log n$

Theorem [CHHL'18]: Fractional PRG \rightarrow PRG.

Open Problem

Conjecture [Chatopadhyay, Hatami, Lovett, T'19]:

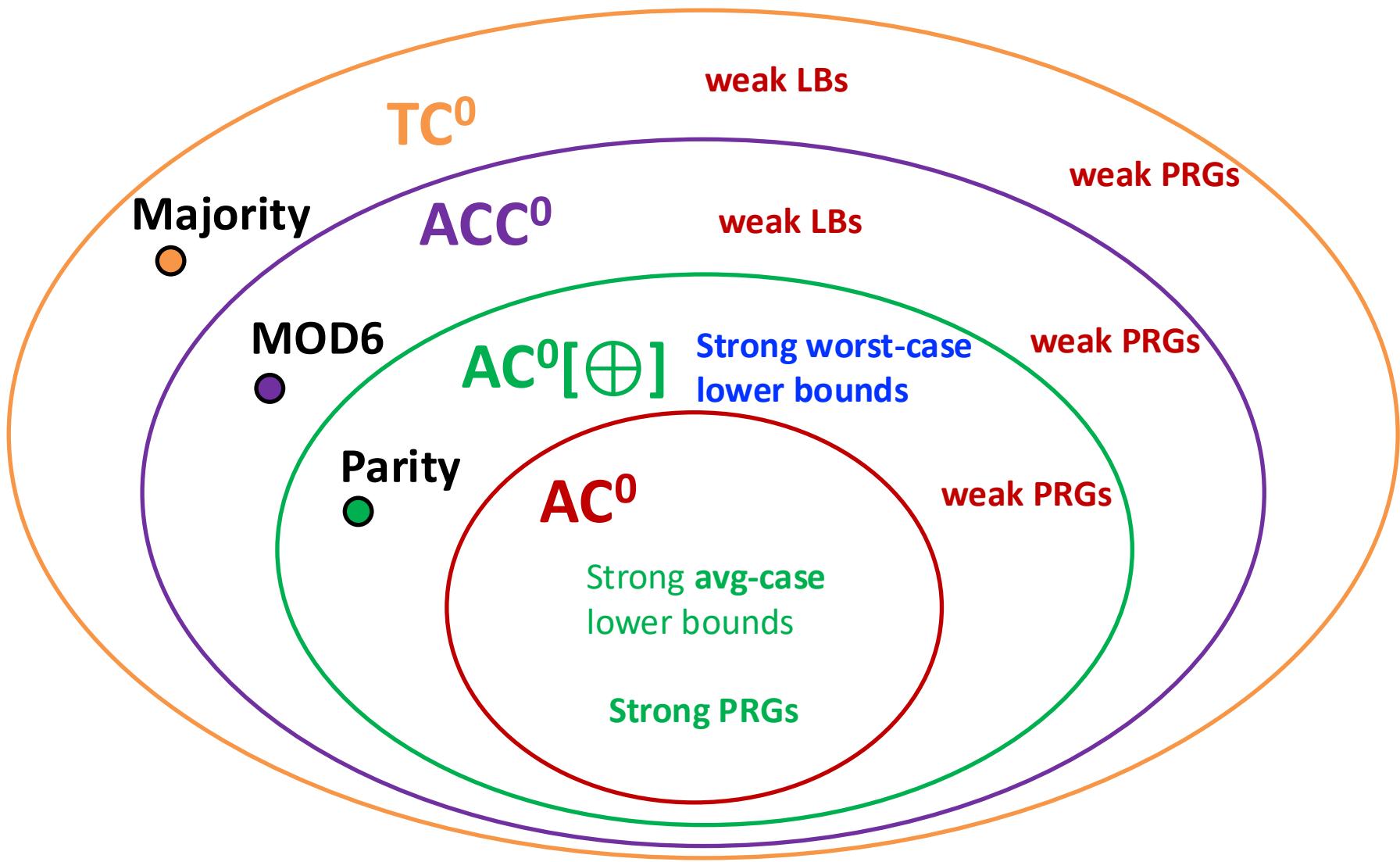
Low-Degree F_2 -polynomials have sparse approximations.

More Formally: If $p(x) \in F_2[x_1, \dots, x_n]$ with $\deg(p) = d$,
then $f(x) = (-1)^{p(x)}$ has

$$\forall k: \sum_{S: |S|=k} |\hat{f}(S)| \leq O(d)^k.$$

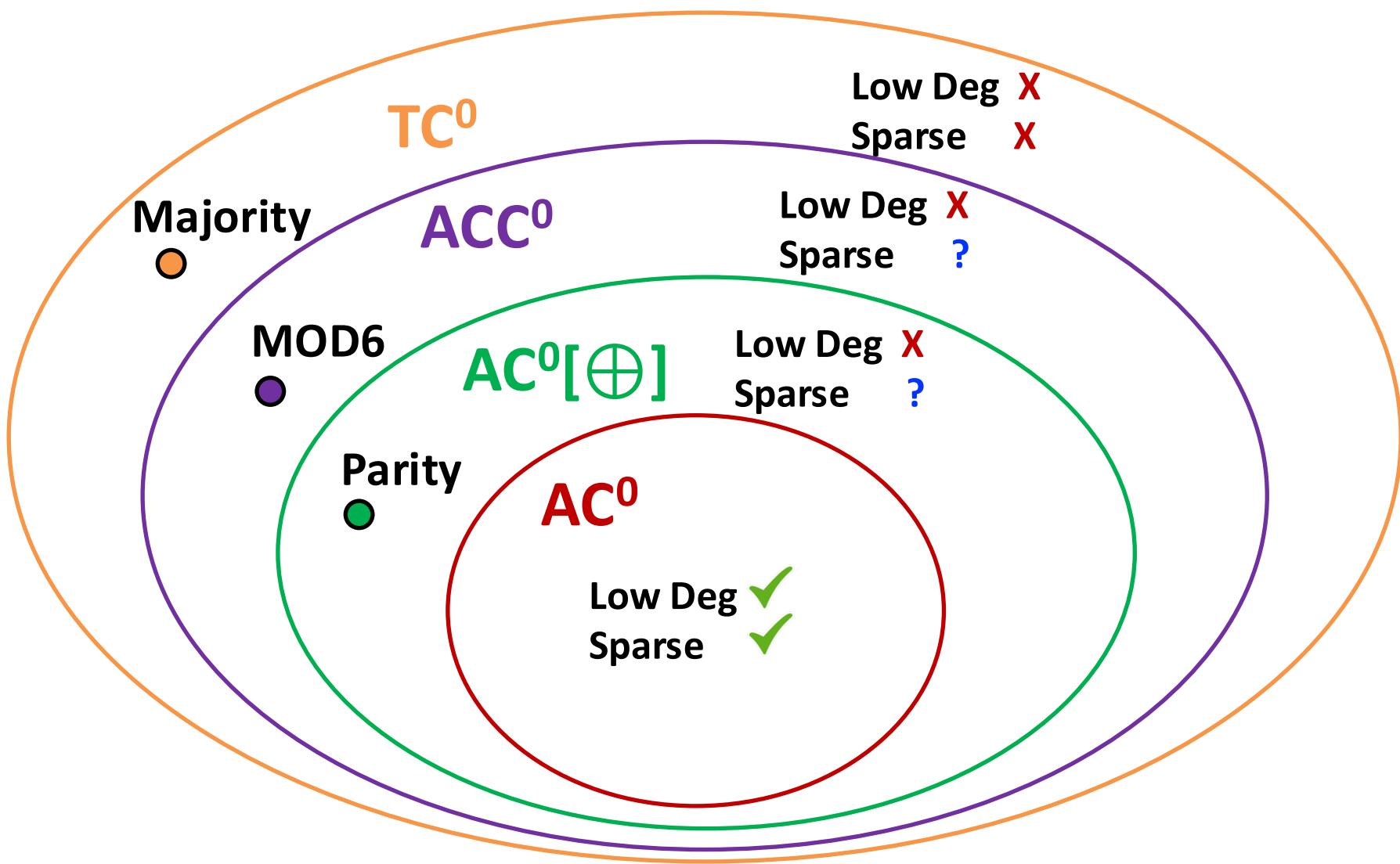
- We can prove the case $k=1$.
- Proving the case $k=2$ would yield pseudorandom generators that “look random” to low-degree F_2 -polynomials (**longstanding challenge**)

Circuit Complexity Frontier

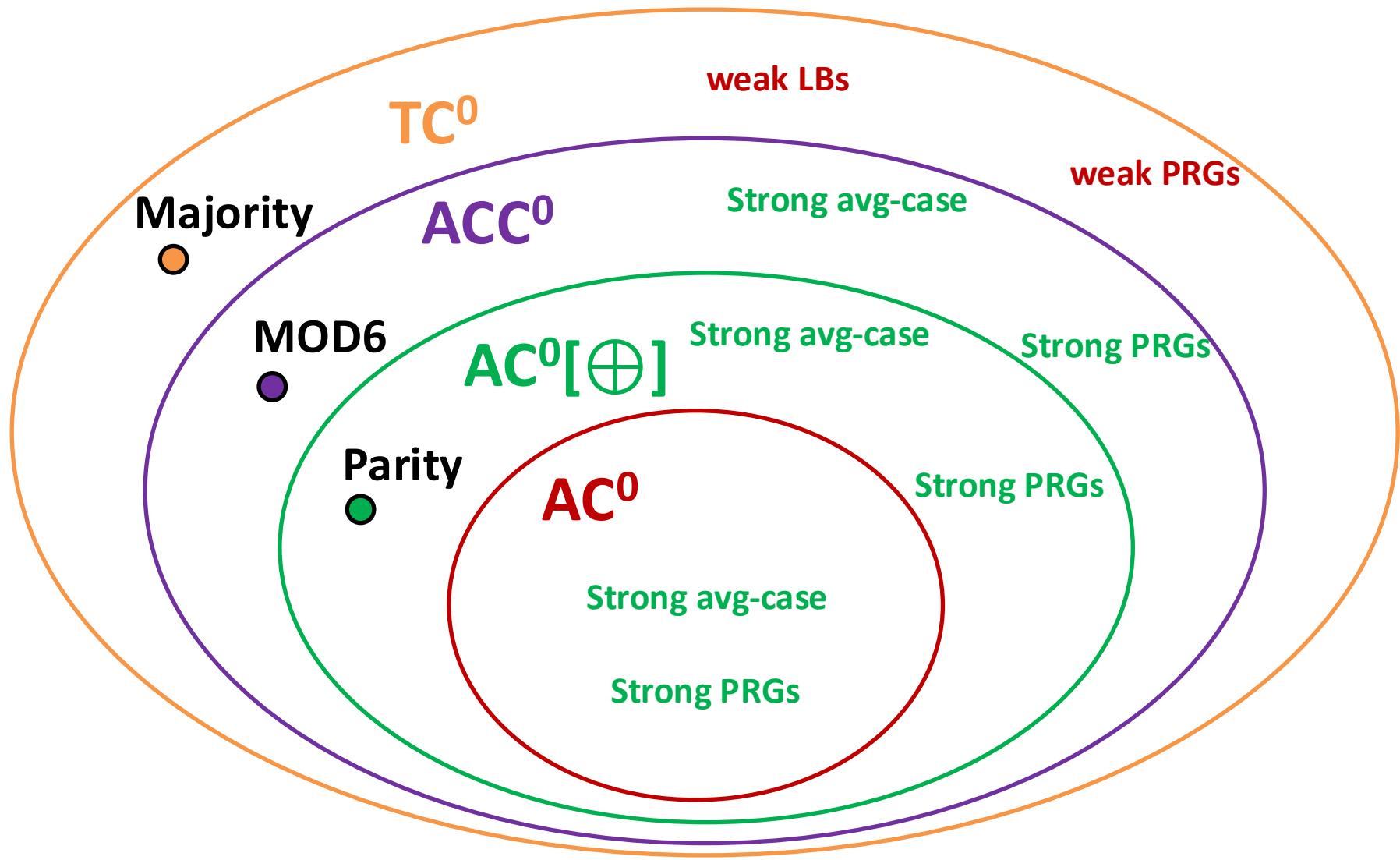


How broad are Sparse Polynomial Approximations?

Conjecture [CHLT'19]: $\text{AC}^0[\oplus]$, ACC^0 have sparse polynomial approximations



Circuit Complexity assuming Conjecture



Pseudo-randomness:

Can we **derandomize** any algorithm while increasing its **memory** by at most a constant?

Motivating Question: **RL** vs. **L**

Open Question:

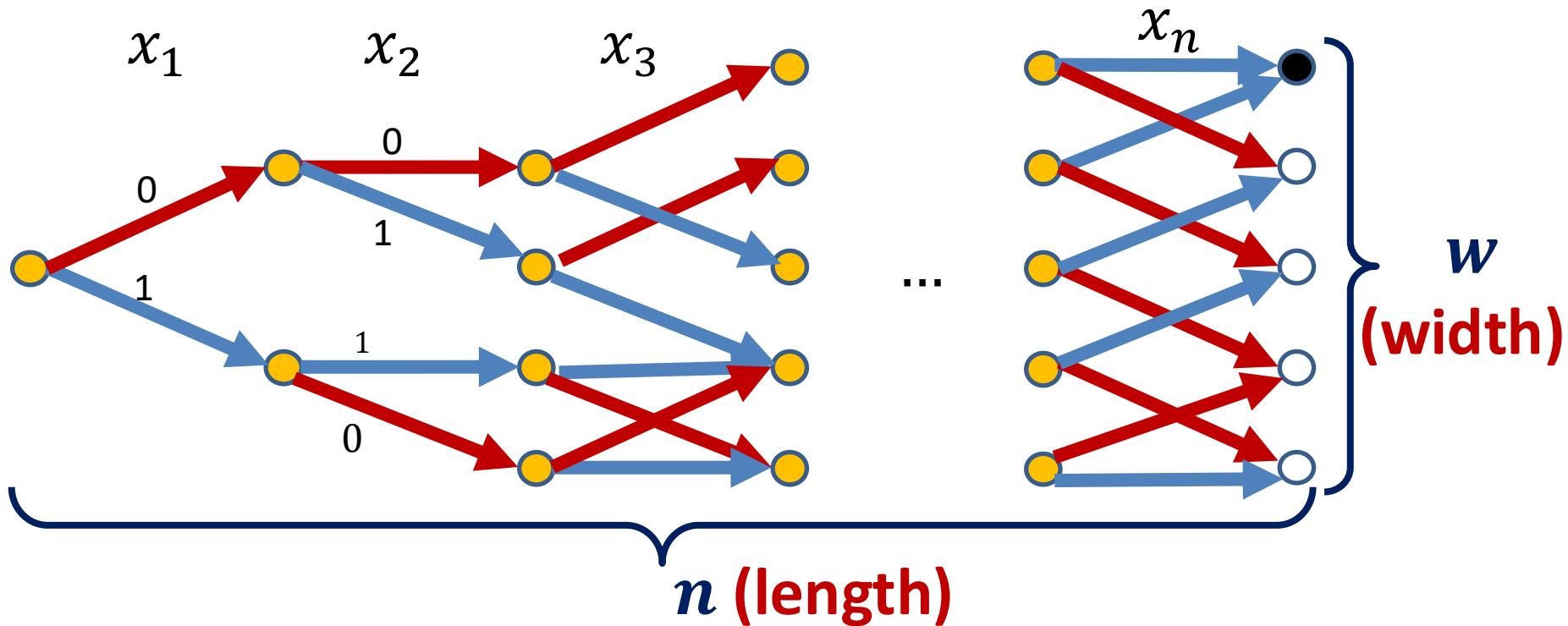
Does every problem solvable by a **randomized** algorithm with space **s**, is also solvable by a **deterministic** algorithm with space **$O(s)$** ?

Suffices to focus on **$s=O(\log n)$** : does **RL = L**?

Randomized-Log-Space

Log-Space

(Read-Once Oblivious) Branching Programs



- Each **layer** represents a **time step**
- Each **vertex** represents a **memory configuration**
- **s** memory bits \rightarrow width at most 2^s

PRGs for Branching Programs

[Nisan'90]: a **PRG** for length- n branching programs with seed-length:

- $O(\log^2 n)$ for width $\text{poly}(n)$ (i.e., **Log-Space**).
- $O(\log^2 n)$ even for constant width

For width 2: seed length $O(\log n)$ suffices

[Saks-Zuckerman, Bogdanov-Dvir-Verbin-Yehudayoff]

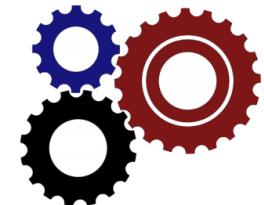
Nisan's PRG remains the state-of-the-art for width ≥ 4

Our Main Structural Result

[Chattopadyay-Hatami-Reingold-T'18]:

constant-width **branching programs** have
sparse polynomial approximations:

$$\forall k: L_{1,k}(f) \leq (\text{polylog } n)^k$$



Applications:

1. Exponentially better PRGs for **unordered** branching programs [CHRT'18, FK'18]
2. PRGs for width-3 branching programs with seed-length $\tilde{O}(\log n)$ [MRT'19]
3. PRGs for read-once AC^0 (and more) with seed-length $\tilde{O}(\log n)$ [DHH'20, DMRTV'21]

Open Problem

Show that the current construction by [Forbes-Kelley'18] works against any constant-width read-once branching programs with $\tilde{O}(\log n)$ seed length

Fourier Growth of Communication Protocols

Fourier Growth of Communication Protocols

Alice and Bob exchange d bits of communication and output a bit.

Their protocol defines a function $F: \{\pm 1\}^n \times \{\pm 1\}^n \rightarrow \{\pm 1\}$

What's the $L_{1,k}$ of F ?

It could be arbitrarily large even with one bit of communication since Alice can compute an arbitrary function of x .

Fourier Growth of Communication Protocols

Alice and Bob exchange d bits of communication and output a bit.

Their protocol defines a function $F: \{\pm 1\}^n \times \{\pm 1\}^n \rightarrow \{\pm 1\}$

They attempt to compute an **XOR lifted function**:

Let $g: \{\pm 1\}^n \rightarrow \{\pm 1\}$ be a Boolean function (can be partial)

They want to compute $g(x \odot y)$ where $x \odot y$ is the bitwise product (XOR) of the strings

To succeed for any z in the domain of g , $g(z)$ should be equal to $E_{x,y}[F(x, y) \mid x \odot y = z]$

→ Fourier growth of the folded function $h(z) = E_{x,y}[F(x, y) \mid x \odot y = z]$

Fourier Growth of Communication Protocols

Alice and Bob exchange d bits of communication and output a bit.

Their protocol defines a function $F: \{\pm 1\}^n \times \{\pm 1\}^n \rightarrow \{\pm 1\}$.

Let $h(z) = \mathbf{E}_{\mathbf{x}, \mathbf{y}}[F(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \odot \mathbf{y} = z]$

Theorem [GRT21]: $L_{1,k}(h) \leq O(d)^k$

Theorem [GSTW23]: $L_{1,1}(h) \leq \sqrt{d}$, $L_{1,2}(h) \leq d^{3/2} \log(n)^{O(1)}$

Applications:

- New Proof for $\Omega(n)$ randomized communication complexity of Gap-Hamming-Problem
[Chakrabarti, Regev'10]
- XOR-lift of **Forrelation**₂:
 - Requires $\tilde{\Omega}(n^{1/3})$ randomized communication complexity
 - Can be computed in the simultaneous model using $\log(n)$ quantum communication, where each player implements an efficient quantum circuit of size $\text{polylog}(n)$.

Open Problem

- Show $L_{1,2}(h) \leq d \log(n)^{O(1)}$
- Show $L_{1,k}(h) \leq O(\sqrt{d} \log n)^k$ for all k
- **The above conjecture** is implied by **lifting with any constant-size gadgets** (or even log-log size gadgets).

Summary

- Fourier L_1 degree- k sparsity (low $L_{1,k}$) as a **ubiquitous phenomenon**
- Separates quantum from classical query algorithms.
- Implies new oracle separations.
- Separates quantum from classical communication.
- Is useful for the design of pseudorandom generators for circuits
... and the design of pseudorandom generators against small space.

Connections to Open Problems:

- **RL** vs **L**
- Lifting with constant size gadgets
- PRGs and average-case lower bounds for **AC⁰[⊕]**, **ACC⁰**

Thank You!