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Lectures 3 & 4

Main character: Fourier Growth — a complexity measure
for Boolean functions that captures the ability to
aggregate weak k-wise correlations in the input.

Applications:

1. Quantum Advantage
2. Pseudo-randomness
3. Lower Bounds



Quantum Advantage:

For which tasks do quantum algorithms
provably outperform classical algorithms?



The Black-Box / Query Model

Typical Question: Does the black-box satisfy a property or not?

Query Complexity: How many queries (possibly adaptive) are
needed to determine the property?



depth d

The Decision Tree Model

D(f)

f{-1,1" > {-1,1}

minimal depth of a
decision tree
computing f

deterministic query
complexity of f



The Randomized Decision Tree Model

Randomized decision tree of depth d: a distribution over
deterministic decision trees of depth at most d.

We say that a randomized decision tree computes f if its output
equals f(x) with probability at least g forallx € {—1,1}"

R(f) = minimal depth of a
randomized decision
tree computing f

= randomized query
complexity of f




Quantum Query Complexity

|£)

| x e {+t1} ikt .

A query to the input applies the unitary transformation 0O, that maps

|2} = x;i)
A t-query quantum algorithm applies
Upp1 0x U o Oy Uz O, Uy O Uy |0)

where U, ..., U;, are unitary transformations that do not depend on x.

Finally: measure the state =» accept/reject based on outcome.



 x e {1}V

We say that a quantum query algorithm computes f if its output
equals f(x) with probability at least % forallx € {—1,1}"

Q(f) = minimal number of queries of a
quantum query algorithm computing f

quantum query complexity of f



Quantum Advantage in Query Model

Are quantum algorithms superior to randomized -
(or deterministic) algorithms in the query model? Vs

[Grover’96]: Quadratic speed-up

[Aaronson, Ben-David, Kothari’16, T’20, Bansal, Sinha’21,
Sherstov, Storozhenko, Wu’21]: Super-quadratic speed-ups!

Constructed a total function f.s with R(f.s) = Q(Q(f.9)?)

[Beals, Buhrman, Cleve, Mosca, de Wolf’98, Aaronson, Ben-David, Kothari, Rao, T’ 21]:

For total functions f: {+1}" — {+1} at most polynomial speed-ups:

R(f) <D(f) < 0(Q(N*)

For partial functions f: A —» {—1,1}, A € {—1,1}" exponential
separations exist [Simon’94, Shor’94, Childs, Cleve, Deotto, Farhi, Gutmann,

Spielman’03, Aarondson, Ambainis’15], e.g. Q(f) = 0(1), R(f) — /N



Motivation:

ldentify a property that separates
qguantum from classical (query) algorithms



Recall: Discrete Fourier Analysis 101

The Fourier transform of a Boolean function f naturally
defines a distribution Dr over sets § € {1, ..., n}:

{ The probability to sample S from Dy equals f(S)2.

__

Denote by W*[f] = Pr [|S| = k] = X5, 5=k f (5)°

S~Df
Fourier Weight
Denote by W=*[f] = Sljgf[|5| > k] = Zgysi1 £ (5)?

Fourier Tail



Tails and Low-Degree Approximation Equivalence

Let f:{—1,1}" - R. The truncated Fourier expansion of f at level k
is a degree k polynomial defined by

fEe = ) f©)-|

S:|S|<k IES

By Parseval: E, [(f(x) — fSR(x))ZI = WH[f].

By Parseval: this is the best L,-approx. of f among degree k polys.

‘ f has a degree-k L,-approximation with error ¢ iff W7*[f] < ¢ ‘
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Exponentially Small Fourier Tails

Definition: f has ESFT(t) if for all k: W2F[f] < e F/t
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Exponentially Small Fourier Tails

Definition: f has ESFT(t) if for all k: W2F[f] < e F/t

Several well-studied classes of Boolean functions have ESFT(t)

1. CNFs / DNFs formulae H’86, LMN’89] t = O(logn)
2. Formulae of size s R’11] t = 0(H/s)

3. Read-Once formulas 1K’14] t = 0(n'31)
4. Constant-depth circuits T’14] t = polylog(n)
5. Fncs with max-sensitivity s  [GSTW’16] t =0(s)

“Excellent Low-Degree Approximations”

Equivalently: f in ESFT(t) if
Ve >0 3p: deg(p) <t-log(l/e), lp—Tfll;<e.



Correlation with Parity

Observation: if f in ESFT(t), then

E, [f(x) . Parityn(x)] < e~ /2t

Proof:

|E.[f () - Parity, (0]] = | f({L, ..
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Different Notions of Fourier Concentration

TFAE:
- f has Exponentially Small Fourier Tails: f € ESFT(t)
- f has bounded Fourier k-moments:

Vk: Egp, [('i')] < 0(t)*

- f simplifies under random restrictions:
Vp, k: Pr |deg(frestrictea) = k] < 0(pt)k-

p random
restriction

: . . 4 N
and they imply using Booleanity ) .
L, degree-k sparsity: z 17 (S =0(t)

\S:|S|=k O
&0




Theorem: Let f: {—1,1}" —» {—1,1}. Then,
v 3 17 <24 5o, (5]

S:|S|=k
Proof: Move to iPad



Separation between Quantum and Randomized Query Algorithms

First Try: Consider polynomial degree X

Problem: Both models are approximated by low-degree
polynomia Is... [Nisan, Szegedy '92] [Beals, Buhrman, Cleve, Mosca, de Wolf ’98]

But these polynomials are very different!

=

"SAMNE SAME BUT DIFFERENT '«

H 19%101

LADAKHI & CASHMIRlL ARTS FORT R0AL, LEH LALA

L, j of a quantum query algorithm making k /2 queries can be VN1

L, j, of a randomized query algorithm making d queries is at most Vd*



The Forrelation Problem [Aaronson’09]

The input to the (2-Fold) Forrelation Problem are two vectors
x,y €{—1,1}"/2

The 2-Fold Forrelation Problem: distinguish between

- Ax,Hy)
[Yes Instances]: (x' y) ' N/2 =T Pairwise correlations i\/—TN
. . (x,Hy)
[NO InStanceS] ) (x' y) . N/2 = T/Z No pairwise correlations
N/2N/2
(x,Hy) 1 Z/Z/ ;
N/2  Nj2Lu L
=1 j=1

(_1)<i,j>

Y N2

H




Qantum Algorithm for 2-Fold Forrelation

[Aaronson’09]:

DDA,

The probability of measuring the all 0’s vector

N/2 N/2 (e, Hy) )
<N zzsz” f) _< N/2 )

i=1j=1

Main Technical Result [Raz-T’19]:
To solve Forrelation, f must have large L, ,(f).




Bounded Depth Circuits

BON BOR

X1 Xg X19 X4 X7 Xc7 X3 X14  X26 X9 X17 Xsg
AC°

* poly(N) gates (size of the circuit)
 depthd =0(1)

Motivating Question: Separate Quantum Log Time from AC°

=» Oracle Separation of BQP (Quantum Polynomial Time)
from PH (The Polynomial Hierarchy)



What do we know about constant depth circuits (AC°)?

[Furst-Saxe-Sipser’81, Ajtai’83, Yao’85, Hastad’86]:
* The N-variate Parity function is not in AC°.

Proof technique:

* AC? circuits can be well-approximated (in £,) by
low-degree polynomials (over R). [Hastad’86, LMN’89]

* Parity cannot.

Potential problem with the approach:

0(log N) time quantum algorithms are also well approximated
by low-degree polynomials. [BBCMW’98]



The Difference between Quantum Log Time and AC°

Both models are approximated by low-degree polynomials,
but these polynomials are very different!

Quantum Log Time may require dense low-deg polynomials
as in the case of Aaronson’s algorithm:

Degree: 2,  #(monomials): O(N? Amplifies small
pairwise correlations

[T’17]: AC? have sparse low-degree approximations:

Vk: #(monomials of degree k) < (polylog N)*

Does not amplify




Application

[Raz-T’19]:
3 oracle A: BQP# ¢ PH“

“Even if P were equal to NP, even making that strong assumption,
that’s not going to be enough to capture (the power of)
guantum computing.” (Lance Fortnow)



Distinguishing between Distributions

ze{-1,+1}V
sampled
from the

“Forrelation”
distribution D

z e {-1,+1}"
sampled from
the uniform
distribution U

One of these boxes is selected at random & given to you.
Can you tell which one is it?



Sampling Forrelated Pairs

(Based on Aaronson’s suggestion with some modifications)
Gaussian dist G over RY =» Discrete dist D over {—1,1}"

The Gaussian distribution G:
Sample x4, ..., Xy i.i.d. V'(0,07)

Output z = (X, v, XN /2, V1) - Ynj2)- |07 =1/0(ogN)

The Discrete distribution D:
1. Draw z~G. If z¢ [—1,1]" = abort

2. Randomized Roundlng Fori=1,...,N,
draw independently z; € {—1,1} W|th E[ = z.



~ TheFourier Expansion

The Fourier expansion of f: {—1,1}" - {-1,1}: | 1 =True

f(x)— z f(S) l—[xl +1 = False

Sc{1,... LES

For example: AND of 2 variables
AND(x{, x5) =% + %xl + %xz — %xlxz

AND(+1, +1) = +; + ; +% %z 41 (CL+D (14D
AND(+1,—1) = += + = — =+ = +1.

2 2 2 2
AND(=1,+1) = +-—~+- +- = +1.

2 2 2 2 (-1,-1 (+1,-1)

N
N
N
N



Fourier Expansion: a Bridge between

Discrete and Continuous Settings
The Fourier expansion of f: {—1,1}} - {—1,1}:

fo= ) f©&-] |

Sci1,..,N} (€S

Discrete Gaussian

Lemma: E,/_p[f(z)] = E,¢lf(2)]

Fact: E,.y[f(w)] = £(0)

Enough to show: For any f in AC°

E,-c[f(2)] ~ f(0)



Fourier Analytical Approach — First Attempt

E, ¢ f(Z) f(O) =

= ) F9) Eug []_[ zi]
|S1=1 i€S
N/2

=) D F) Eu []_[z]
£=1|S|=27¢ IES
N/2

< HOIas
{’ZHSIZZ{’ \/N/Z{)
N/2

!
< » polylog(N)?* - g%

(By definition)

(odd moments = 0)

(Isserlis’ Theorem)

4 )

Contribution of
first O(VN) terms:
o2 - polylog(N)/VN

\Contribution of larger terms?J




Viewing z~( as a result of a random walk

A Thought Experiment:
Instead of sampling z~G

at once, we sample t vectors
A AQ P

independently, and take

Z = 1t (z + - +20)

7

Based on the work of
[Chattopadhyay, Hatami, Hosseini, Lovett’ 18]

Picture from http://en.wikipedia.org/wiki/Random_walk



Viewing z~( as a result of a random walk

Sample t vectors z(V, ..., z(0~(G

Define £ + 1 hybrids:
¢ HO — 6
e Fori=1,..,t

= (z<1) toe 4 Z(i))

Vit
Observe: H.~ G.
Taking t — oo yields a Brownian motion.
Suffices to take t = poly(N) for our analysis.

Claim:fori =0, ...,t — 1,

[ELf (H.)] — ELF (H)]| < 2282




Proof by Picture

[CHHL'18]: i-th step = first step,

using closure under restrictions. -th step

First Step: Simple Fourier Analysis ‘ert step
Only second level matters.



Base Case

E[f(H,)] — E[f(H,)]

zl'jjj[ («t )] /)
> ) F) B [ﬂjzl]

t=1|s[=2¢ i€S

N/2

DIPNIOIE

£=11S|=2¢ w/N/Z

N/2 20 p)
< 2 polylog(N)?¢ - y

r=1 tt-N/2

p_olylog(N) 1
=TTWN +O(tx/ﬁ)

(for t large enough)




General Case: Reduction to Base Case

Lemma [CHHL’'18]: for any fixed v € [—0.5, 0.5]" the fnc
9(z) ¥ f(v+z)—f(v)

can be written as E,, [fp(Z $ Z) — fp(O)] where f, is a

random restriction of f (whose marginals depend on v).

Analysis of step i+1:
Conditioned on H; € [—0.5,0.5]" (happens whp):

ELF (1,,)] - ELF (1))
< [Blr (i 5-20) = ran

< e[ (2 Z<L+1>) 0B polylog(N)

(VN -




Main character: Fourier Growth — a complexity measure
for Boolean functions that captures the ability to
aggregate weak k-wise correlations in the input.

Applications:

1. Quantum Advantage
2. Pseudo-randomness
3. Lower Bounds



Exponentially Small Fourier Tails

Definition: f has ESFT(t) if for all k: W2F[f] < e F/t
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Exponentially Small Fourier Tails

Definition: f has ESFT(t) if for all k: W2F[f] < e F/t

Several well-studied classes of Boolean functions have ESFT(t)

1. CNFs / DNFs formulae H’86, LMN’89] t = O(logn)
2. Formulae of size s R’11] t = 0(H/s)

3. Read-Once formulas 1K’14] t = 0(n'31)
4. Constant-depth circuits T’14] t = polylog(n)
5. Fncs with max-sensitivity s  [GSTW’16] t =0(s)

“Excellent Low-Degree Approximations”

Equivalently: f in ESFT(t) if
Ve >0 3p: deg(p) <t-log(l/e), lp—Tfll;<e.



Sparse Polynomial Approximations

Def'n: f in Ly(t) if Vk: X, =i| ()] < t*

Theorem [T’14]: If f is a Boolean function
f in ESFT(t) = f in L1(O(t))

low degree approximations = “sparse” approximations

But the latter is a much broader class!
* Parity in L(1). That is, Parity is sparse but of high degree.
* constant-width branching programs in L,(polylog(n)) [CHRT’18]

* Most Boolean functions are in L,(O(1)) !!

Which functions do not have “sparse” approximations?
 Majority (Hardest function for this measure), Forrelation



Known Bounds on L  (f) = ).

width-w DNFs/CNFs: Lix S wk
ACO circuits of size s and depth d: Lix < (logs)@-Dk
Boolean functions with sensitivity s: Lix S sk

regular width-w read-1 branching programs:L; , < (w)k

width-w read-1 branching programs: Liy S (logn)Wk

degree-d polynomials over F;: L s (2¢- k)k
~ k

depth-d (randomized) decision tree: L, s 0(Vd)

~ K
depth-d (randomized) parity decision tree: L, < 0(\/d)
communication protocols of cost d: Lig s dr
LiisVd, Ly, sd??

Quantum query algorithms with r-rounds g-queries per round:
1

1
Lix S (N2~ ar - CI)k

Most bounds are of the form L, ;, < t”* for some parameter ¢

[Man95]

[T17]
[GSTW16]
[RSV13,LPV22]
[CHRT18]

[CHHL19]
[T20, SSW21]

[GTW21]

[GRT21]
[GSTW23]

[GSTW24]



Proof Overview — L, ; for Decision Trees [0S’07]

* Let £ be a random root-to-leaf path
« ¢, € {+1, -1} iff x; is queried in the path and fixed to ¢,
* Then
FUID = Ex[f () - x;] = Eo[f(€) - Eyoplx]]
= E,[f(¥) - £;]

* By negating x; in f, we assume f({i}) >0
* By querying dummy variables, WLOG the decision tree is full

« Then Ly (f) =%, f({iD) = Ef(8) -3 4] S EIX; 411

« Y., ?; depends only on the number of +1/—1’s on the path
= the final state of a simple d-step drunkard walk




Proof Overview — L, , for Decision Trees [T’20]

FUL TN = E[f00) - xix)] = EBo[f (D) - £ - £)].

Can we assume f({i,j}) = 0?
Probably not. But we can write

GEDNICEDIEDWAN(ER))
for +-1 coefficients a; ; li sgn(f({i,j}))l.’]

Then Ly,(f) = Eo[f(£) - ai;- 4] S EplI Ty ai)- €4 1]

|Zi,j a; j - £i¥;| ~arandom 1-D walk with variab LRI N AR

Let () be the evolution of £ after t queries.
If querying x,, in step t+1, then step size is

(t+1) p(t+1) (®) p(O)) _ (t)
|Zi’jai’j-fi ’PJ —Zi’jai’j-fi ’BJ |— Z]aqufj




Applications to Pseudo-randomness

/////// /’ /’ / ‘ /’ /’ /’ /’ /’ /’ /’

D D
& &y

A distribution D over {+1}" is pseudorandom for class C if
Vi €C: Eyplf(x)] =¢ Exoylf(x)]
A pseudo-random generator (PRG) for C is a function
PRG:{—1,1}° - {—1,1}"
such that PRG(U;) is pseudorandom for C.



Applications to Pseudo-randomness

/'/ /‘/'/'/ /'/'//

///////////

[CHLT’19] Vt: a pseudo-random generator (PRG) for all functions f
with L1 ,(f) < t (assuming same holds for subfunctions of f)

with seed length s = 0(t?).

Build on [CHHL'18]: a PRG assuming L ,(f) < t” for all k.



PRG Construction

Observe that in the Forrelation analysis, we only relied on pairwise
correlation of Gaussians being smaller than 1/L, ,(f).

Lemma [CHLT’19] : We can sample n Gaussians with pairwise

correlation & with only O (5—12 - log? (n)) seed.

But this gives us just a “Fractional PRG”: a pseudorandom
distribution D of points in R™ that is indistinguishable to f

from uniform on {—1,+1}", and such that E, [xlz] > 1/logn

Theorem [CHHL’18]: Fractional PRG =» PRG.



Open Problem

Conjecture [Chattopadhyay, Hatami, Lovett, T'19]:

Low-Degree F,-polynomials have sparse approximations.
More Formally: If p(x) € F,[x4, ..., x,,] with deg(p) = d,
then f(x) = (=1)P™ has

vi: Y |f(9)] < 0(@*,
S:|S|=k

* We can prove the case k=1.

* Proving the case k=2 would yield pseudorandom generators that “look
random” to low-degree F,-polynomials (longstanding challenge)



Circuit Complexity Frontier

weak LBs

weak PRGs

weak LBs

Aco[ @ ] Strong worst-case

lower bounds

weak PRGs

Strong avg-case
lower bounds

Strong PRGs




How broad are Sparse Polynomial Approximations?

Conjecture [CHLT’19]: AC°[D], ACC° have sparse polynomial approximations

Low Deg X
Sparse X

Low Deg X
Sparse ?




Circuit Complexity assuming Conjecture

weak LBs

weak PRGs

Strong avg-case

Strong avg-case

AC’[D]

Strong PRGs

Strong avg-case

Strong PRGs




Pseudo-randomness:

Can we derandomize any algorithm while
increasing its memory by at most a constant?



Motivating Question: RLvs. L

Open Question:

Does every problem solvable by a randomized algorithm with
space s, is also solvable by a deterministic algorithm with space
O(s)?

Suffices to focus on s=0(log n): does RL=L?

/7 N\

Randomized-Log-Space Log-Space



(Read-Once Oblivious) Branching Programs

X1 X2

v
n (length)
 Each layer represents a time step

* Each vertex represents a memory configuration
s memory bits = width at most 2°



PRGs for Branching Programs

[Nisan’90]: a PRG for length-n branching programs with
seed-length:

* 0(log?n) for width poly(n) (i.e., Log-Space).
* 0O(log“n) even for constant width

For width 2: seed length O(logn) suffices
[Saks-Zuckerman, Bogdanov-Dvir-Verbin-Yehudayoff]

Nisan’s PRG remains the state-of-the-art for width = 4



Our Main Structural Result

[Chattopadyay-Hatami-Reingold-T’18]:

constant-width branching programs have
sparse polynomial approximations:

0
Vk: Ly (f) < (polylog n)* o©

Applications:

1.

Exponentially better PRGs for unordered branching
programs [CHRT’18, FK’18]

PRGs for width-3 branching programs with seed-
length O(log n) [MRT’19]

PRGs for read-once AC® (and more) with seed-
length O(log n) [DHH’20, DMRTV’21]



Open Problem

Show that the current construction by [Forbes-Kelley’18]
works against any constant-width read-once branching

programs with O (log n) seed length




Fourier Growth of Communication Protocols

~— W THIS PLACE
“| MAKES NO SENS




Fourier Growth of Communication Protocols

Alice Bob

x € {1} y € {+1}"

Alice and Bob exchange d bits of communication and output a bit.
Their protocol defines a function F: {+1}" x {+1}" - {+1}

What’s the L, j, of F?
It could be arbitrarily large even with one bit of communication
since Alice can compute an arbitrary function of x.



Fourier Growth of Communication Protocols

Alice and Bob exchange d bits of communication and output a bit.
Their protocol defines a function F: {+1}" X {+1}" - {+1}

They attempt to compute an XOR lifted function:
Let g: {+1}" - {+1} be a Boolean function (can be partial)
They want to compute g(x © y) where x © vy is the bitwise product (XOR) of the strings

To succeed for any z in the domain of g, g(z)should be equal to E, [F(x,y) | x O y = 7]
=» Fourier growth of the folded function h(z) = Exly[F(x, V) IxOy=7z7]



Fourier Growth of Communication Protocols

Alice and Bob exchange d bits of communication and output a bit.
Their protocol defines a function F: {+1}" x {£1}" - {£1}.

et h(2) = Ey[F(xy) |xOy = 7]

Theorem [GRT21]: L1 (h) < 0(d)"
Theorem [GSTW23]: Li1(h) < Vd, Li,(h) < d3/%1og(n) oW
Applications:

* New Proof for Q0(n) randomized communication complexity of Gap-Hamming-Problem
[Chakrabarti, Regev’10]

* XOR-lift of Forrelation,:
* Requires ﬁ(nl/?’) randomized communication complexity
* Can be computed in the simultaneous model using log(n) quantum communication,
where each player implements an efficient quantum circuit of size polylog(n) .



Open Problem

* Show L, ,(h) < dlog(n)°™W
* Show L, ,(h) < 0(Vdlogn)* for all k

* The above conjecture is implied by lifting with any constant-size
gadgets (or even log-log size gadgets).



* Fourier L, degree-k sparsity (low L4 ;) as a ubiquitous phenomenon

Separates quantum from classical query algorithms.

Implies new oracle separations.

Separates quantum from classical communication.

Is useful for the design of pseudorandom generators for circuits
... and the design of pseudorandom generators against small space.

Connections to Open Problems:

* RLvsL

 Lifting with constant size gadgets

* PRGs and average-case lower bounds for AC°[], ACC°

Thank You!
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